860 research outputs found

    Restoration of Apollo Data by the Lunar Data Project/PDS Lunar Data Node: An Update

    Get PDF
    The Apollo 11, 12, and 14 through 17 missions orbited and landed on the Moon, carrying scientific instruments that returned data from all phases of the missions, included long-lived Apollo Lunar Surface Experiments Packages (ALSEPs) deployed by the astronauts on the lunar surface. Much of these data were never archived, and some of the archived data were on media and in formats that are outmoded, or were deposited with little or no useful documentation to aid outside users. This is particularly true of the ALSEP data returned autonomously for many years after the Apollo missions ended. The purpose of the Lunar Data Project and the Planetary Data System (PDS) Lunar Data Node is to take data collections already archived at the NASA Space Science Data Coordinated Archive (NSSDCA) and prepare them for archiving through PDS, and to locate lunar data that were never archived, bring them into NSSDCA, and then archive them through PDS. Preparing these data for archiving involves reading the data from the original media, be it magnetic tape, microfilm, microfiche, or hard-copy document, converting the outmoded, often binary, formats when necessary, putting them into a standard digital form accepted by PDS, collecting the necessary ancillary data and documentation (metadata) to ensure that the data are usable and well-described, summarizing the metadata in documentation to be included in the data set, adding other information such as references, mission and instrument descriptions, contact information, and related documentation, and packaging the results in a PDS-compliant data set. The data set is then validated and reviewed by a group of external scientists as part of the PDS final archive process. We present a status report on some of the data sets that we are processing

    The Ionization Fraction in Dense Molecular Gas II: Massive Cores

    Full text link
    We present an observational and theoretical study of the ionization fraction in several massive cores located in regions that are currently forming stellar clusters. Maps of the emission from the J = 1-> O transitions of C18O, DCO+, N2H+, and H13CO+, as well as the J = 2 -> 1 and J = 3 -> 2 transitions of CS, were obtained for each core. Core densities are determined via a large velocity gradient analysis with values typically 10^5 cm^-3. With the use of observations to constrain variables in the chemical calculations we derive electron fractions for our overall sample of 5 cores directly associated with star formation and 2 apparently starless cores. The electron abundances are found to lie within a small range, -6.9 < log10(x_e) < -7.3, and are consistent with previous work. We find no difference in the amount of ionization fraction between cores with and without associated star formation activity, nor is any difference found in electron abundances between the edge and center of the emission region. Thus our models are in agreement with the standard picture of cosmic rays as the primary source of ionization for molecular ions. With the addition of previously determined electron abundances for low mass cores, and even more massive cores associated with O and B clusters, we systematically examine the ionization fraction as a function of star formation activity. This analysis demonstrates that the most massive sources stand out as having the lowest electron abundances (x_e < 10^-8).Comment: 35 pages (8 figures), using aaspp4.sty, to be published in Astrophysical Journa

    Pulmonary embolism severity before and during the COVID-19 pandemic

    Get PDF
    OBJECTIVES: Early in the coronavirus 2019 (COVID-19) pandemic, a high frequency of pulmonary embolism was identified. This audit aims to assess the frequency and severity of pulmonary embolism in 2020 compared to 2019. METHODS: In this retrospective audit, we compared computed tomography pulmonary angiography (CTPA) frequency and pulmonary embolism severity in April and May 2020, compared to 2019. Pulmonary embolism severity was assessed with the Modified Miller score and the presence of right heart strain was assessed. Demographic information and 30-day mortality was identified from electronic health records. RESULTS: In April 2020, there was a 17% reduction in the number of CTPA performed and an increase in the proportion identifying pulmonary embolism (26%, n = 68/265 vs 15%, n = 47/320, p < 0.001), compared to April 2019. Patients with pulmonary embolism in 2020 had more comorbidities (p = 0.026), but similar age and sex compared to 2019. There was no difference in pulmonary embolism severity in 2020 compared to 2019, but there was an increased frequency of right heart strain in May 2020 (29 vs 12%, p = 0.029). Amongst 18 patients with COVID-19 and pulmonary embolism, there was a larger proportion of males and an increased 30 day mortality (28% vs 6%, p = 0.008). CONCLUSION: During the COVID-19 pandemic, there was a reduction in the number of CTPA scans performed and an increase in the frequency of CTPA scans positive for pulmonary embolism. Patients with both COVID-19 and pulmonary embolism had an increased risk of 30-day mortality compared to those without COVID-19. ADVANCES IN KNOWLEDGE: During the COVID-19 pandemic, the number of CTPA performed decreased and the proportion of positive CTPA increased. Patients with both pulmonary embolism and COVID-19 had worse outcomes compared to those with pulmonary embolism alone

    On the period ratio P<sub>1</sub>/2P<sub>2</sub> in the oscillations of coronal loops

    Get PDF
    &lt;p&gt;Aims. With strong evidence of fast and slow magnetoacoustic modes arising in the solar atmosphere there is scope for improved determinations of coronal parameters through coronal seismology. Of particular interest is the ratio P&lt;sub&gt;1&lt;/sub&gt;/2P&lt;sub&gt;2&lt;/sub&gt;between the period P&lt;sub&gt;1&lt;/sub&gt; of the fundamental mode and the period P&lt;sub&gt;2&lt;/sub&gt; of its first harmonic; in an homogeneous medium this ratio is one, but in a more complex configuration it is shifted to lower values.&lt;/p&gt; &lt;p&gt;Methods. We consider analytically the effects on the different magnetohydrodynamic modes of structuring and stratification, pointing out that transverse or longitudinal structuring or gravitational stratification modifies the ratio P&lt;sub&gt;1&lt;/sub&gt;/2P&lt;sub&gt;2&lt;/sub&gt;.&lt;/p&gt; &lt;p&gt;Results. The deviations caused by gravity and structure are studied for the fast and slow modes. Structure along the loop is found to be the dominant effect.&lt;/p&gt; &lt;p&gt;Conclusions. The departure of P&lt;sub&gt;1&lt;/sub&gt;/2P&lt;sub&gt;2&lt;/sub&gt; from unity can be used as a seismological tool in the corona. We apply our technique to the observations by Verwichte et al. (2004), deducing the density scale height in a coronal loop.&lt;/p&gt

    GCIP water and energy budget synthesis (WEBS)

    Get PDF
    As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996–1999 from the “best available” observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or “close” budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets
    • 

    corecore