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ABSTRACT

Aims. With strong evidence of fast and slow magnetoacoustic modes arising in the solar atmosphere there is scope for improved
determinations of coronal parameters through coronal seismology. Of particular interest is the ratio P1/2P2 between the period P1 of
the fundamental mode and the period P2 of its first harmonic; in an homogeneous medium this ratio is one, but in a more complex
configuration it is shifted to lower values.
Methods. We consider analytically the effects on the different magnetohydrodynamic modes of structuring and stratification, pointing
out that transverse or longitudinal structuring or gravitational stratification modifies the ratio P1/2P2.
Results. The deviations caused by gravity and structure are studied for the fast and slow modes. Structure along the loop is found to
be the dominant effect.
Conclusions. The departure of P1/2P2 from unity can be used as a seismological tool in the corona. We apply our technique to the
observations by Verwichte et al. (2004), deducing the density scale height in a coronal loop.
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1. Introduction

With the advent of space missions Solar and Heliospheric
Observatory (SOHO) and the Transition Region And Coronal
Explorer (TRACE) there is convincing evidence of slow and
fast magnetoacoustic waves in the corona. There is observa-
tional evidence of slow modes occurring as propagating waves
(DeForest & Gurman 1998; Robbrecht et al. 2001; Ofman et al.
1997, 1999; De Moortel et al. 2000, 2002a,b; King et al. 2003;
Sakurai et al. 2002; McEwan & De Moortel 2006) and also
as standing waves (Ofman & Wang 2002; Wang et al. 2002,
2003a,b). Fast kink waves have also been reported as stand-
ing modes (Aschwanden et al. 1999; Aschwanden et al. 2002;
Nakariakov et al. 1999; Wang & Solanki 2004; Verwichte et al.
2004) but may arise also as propagating waves (Verwichte et al.
2005). Williams et al. (2002) found evidence for impulsively
generated propagating fast waves. Fast sausage modes have
also been identified (Nakariakov et al. 2003; Nakariakov et al.
2005; Melnikov et al. 2005). Extensive reviews of these ob-
servations and their theoretical interpretation are provided in
Roberts (2000, 2004), Wang (2004), Roberts & Nakariakov
(2003), Aschwanden (2004), Nakariakov & Verwichte (2005),
De Moortel (2006) and Goossens et al. (2006). Waves can
be utilised to provide a coronal seismology (Roberts et al.
1984; Roberts 1986, 2000, 2004, 2006; Nakariakov et al. 1999;
Nakariakov & Ofman 2001), giving us indirect determinations
of various coronal parameters.

The fundamental period P1 of a MHD mode contains infor-
mation mainly about the average profile of the propagation speed
of the mode. Andries et al. (2005a) argued that the frequencies
and damping times of a stratified loop are very close to those of

� Appendix A is only available in electronic form at
http://www.aanda.org

an unstratified loop with the same weighted mean density, the
weight depending upon the spatial structure of the mode under
consideration (see also Díaz et al. 2006).

Observations of standing waves have so far mainly identi-
fied the fundamental harmonics of a vibrating loop, with evi-
dence for higher harmonics being rare. However, Verwichte et al.
(2004) have identified the fundamental and its first harmonic of
the standing transverse kink mode in two cases.

Andries et al. (2005a,b) and Goossens et al. (2006) have
pointed out that the identification of harmonics could provide
important diagnostic information for the coronal seismology
of a loop. In particular, Andries et al. (2005b) studied the ra-
tio P1/P2 of the fundamental oscillation period, P1, and its first
harmonic or overtone, P2, of a kink mode oscillation, showing
that this ratio falls below 2. For standing waves on an elas-
tic string, P1/P2 = 2 and so P1/2P2 = 1. In Andries et al.
(2005b) the departure of P1/P2 from 2 is a consequence of the
density structure along the loop, and they explore this aspect
through numerical modeling of the oscillations. Their work al-
lows a comparison between the model and the observational re-
sults of Verwichte et al. (2004), which gave P1/P2 = 1.81 in one
case and P1/P2 = 1.64 in another case. Andries et al. (2005b)
included density structure but ignored the effects of gravity.

We take up the suggestion that P1/2P2 may depart from
unity and we argue that such a departure is a natural conse-
quence of the structure and stratification of the medium. We
study how the ratio P1/2P2 deviates from unity for fast and slow
MHD modes in response to such effects as structuring in the lon-
gitudinal or transversal directions or gravity. Our main conclu-
sion is that longitudinal structuring is the most important effect
and this can be used in coronal seismology to estimate properties
such as the density stratification scale.
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2. Ratio of P1/2P2 for fast modes

A convenient starting point for our analysis of fast waves is the
set of linearised ideal MHD equations for a straight uniform
magnetic field B0 = B0 ẑ, constant plasma pressure and an equi-
librium density profile ρ0 (z) that is structured along the z-axis
(Roberts 1991; Díaz et al. 2002; Díaz 2004; see Appendix A for
a derivation),

∂pT

∂t
= ρ0(z)c2

A(z)
∂vz
∂z
− ρ0(z)c2

f (z)∇ · u, (1)

ρ0(z)

(
∂2

∂t2
− c2

A(z)
∂2

∂z2

)
u⊥ + ∇⊥ ∂pT

∂t
= 0, (2)

ρ0(z)

(
∂2

∂t2
− c2

T(z)
∂2

∂z2

)
vz +

c2
s (z)

c2
f (z)

∂

∂z

(
∂pT

∂t

)
= 0, (3)

where cs(z) =
√
γp0/ρ0(z) is the sound speed, cA(z) =

B0/
√
µρ0(z) the Alfvén speed, and cf and cT are defined through

c2
f = c2

s + c2
A and c−2

T = c−2
s + c−2

A . Notice that the character-
istic speeds depend on the coordinate z along the loop via the
equilibrium density profile. Here u = u⊥ + vz ẑ is the perturbation
flow and pT is the associated total (plasma plus magnetic) pres-
sure perturbation. The effects of gravity are not included in this
analysis.

Equations (1)–(3) are valid in the internal and external re-
gion separately. We use boundary conditions of continuous total
pressure and velocity across the interface to model the radial de-
pendence. In Roberts (1991) neither a uniform magnetic field
nor uniform pressure was assumed but the density ρ0 was taken
to be independent of z.

Equations (1)–(3) may be used to obtain the modes of os-
cillation of an unbounded homogeneous cylindrical magnetic
flux tube of radius a with constant densities ρi and ρe inside
and outside the tube. For waves of frequency ω and longitudi-
nal wavenumber k, the modes of oscillation of a magnetic flux
tube embedded in a magnetised plasma have been discussed by
Edwin & Roberts (1983), who obtained a dispersion diagram for
the modes. Figure 1 displays such a diagram, obtained here for
a flux tube with internal Alfvén speed cAi embedded in an envi-
ronment with Alfvén speed cAe = 2cAi; the sound speed ci inside
the tube is ci = 0.2cAi and the sound speed ce in the environment
is ce = 0.1cAi.

2.1. Magnetic structuring

The ratio P1/2P2 departs from unity even in the case of a straight
homogeneous loop. To see this, consider the fast kink mode
which in Fig. 1 has a phase speed cph (= ω/k) which in the limit
of a thin tube (ka� 1) has speed ck, where

ck =

⎛⎜⎜⎜⎜⎝ρic2
Ai + ρec2

Ae

ρi + ρe

⎞⎟⎟⎟⎟⎠
1/2

(4)

where ρi and ρe denote the plasma densities inside and external
to the loop, respectively. In a uniform magnetic field in which
the tube is defined solely by a density difference, so ρi � ρe, then
ck = cAi (2ρi/ (ρi + ρe))1/2; for a high density loop with ρi � ρe,
this gives a speed ck =

√
2cAi, which is 41% larger than the

tube’s Alfvén speed cAi.
Consider then the ratio P1/2P2 of the fundamental fast kink

oscillation of period P1 to its first harmonic of period P2. Since
cph = ω/k, we have an associated period P = 2π/ω = 2π/kcph.

Fig. 1. The dispersion diagram for magnetoacoustic waves in a mag-
netic flux tube of radius a. The diagram gives the phase speed cph(=ω/k)
of the modes as a function of longitudinal wavenumber k (in dimen-
sionless units of ka). The solid curves give the fast kink modes, the
dashed curves are the fast sausage modes. Also shown is the weakly
dispersive band of slow waves (sausage and kink) with speed close
to cT i, the slow mode speed in the tube interior. Here the internal Alfvén
speed cAi is half the Alfvén speed cAe in the environment, ci = 0.2cAi

and ce = 0.1cAi. (After Edwin & Roberts 1983).

Consider a line-tied coronal loop of length 2L. Line-tying deter-
mines the values of the longitudinal wavenumber k that allow the
oscillation to fit within the loop, so that (see Roberts et al. 1984)
k = kn = nπ/(2L), for integer n. Then we obtain a period P = Pn
given by

Pn =
4L

ncph(kn)
· (5)

The speed cph(kn) varies with kn, as shown in Fig. 1; the modes
are dispersive. When n = 1 we obtain the fundamental mode
(with k1 = π/2L) and n = 2 gives its first harmonic (or overtone),
with k2 = 2k1 = π/L). Thus

P1

2P2
=

cph(k2)

cph(k1)
· (6)

In a medium for which dispersion is absent, cph(k1) = cph(k2) and
so P1/2P2 = 1. This is the situation with a sound wave or a wave
on an elastic string. But here dispersion – introduced as a con-
sequence of structuring across the magnetic field – causes this
ratio to depart from unity. In fact, for the kink mode of Fig. 1,
dispersion results in cph(k1) > cph(k2) and so P1/2P2 is less than
unity. Figure 2 displays P1/2P2 as a function of a/L, determined
from Fig. 1 for a uniform tube in a uniform environment (with
the density ρi in the loop interior exceeding the density ρe in the
environment). The departure of P1/2P2 from unity, here a mea-
sure of the density structuring across the field, varies with loop
length. For very short (L � a) or very long (L � a) loops, the
ratio is close to one, but it possesses a minimum when L � a. In
coronal applications, only the results for long loops (L � a) are
likely to be relevant. (In the case of fast sausage modes (shown
dashed in Fig. 1), the presence of cutoff complicates the consid-
eration of P1/2P2, since it may be that the wave is leaky.)

We can understand more fully the departure of P1/2P2 from
unity in the kink mode if we focus on a thin tube (ka � 1) with
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Fig. 2. P1/2P2 for the kink mode in a uniform coronal loop in a uni-
form environment. The dotted curve is for the case ρi/ρe = 2, the solid
curve is for ρi/ρe = 25/4, and the dashed curve represents ρi/ρe = 15.
Departures of P1/2P2 from unity are here a consequence of radial struc-
turing (ρi � ρe, cAi � cAe).

zero plasma β. With β = 0 (sound speeds are set to zero), the
kink mode in a thin tube has a phase speed cph given by (Edwin
& Roberts 1983)

cph = ck

(
1 − A (κka)2 K0 (κka)

)
, ka � 1, (7)

where K0 denotes the modified Bessel function and

A =
1
4

(
ρi − ρe

ρi + ρe

)
, κ =

(
ρi − ρe

ρi + ρe

)1/2

· (8)

This relation applies strictly for ka � 1, but it is illuminating to
consider its use in (6). Then

P1

2P2
=

1 − 4Ax2K0 (2x)
1 − Ax2K0 (x)

, (9)

where we have written x = κk1a = (κπ/2)(a/L). So P1/2P2
varies as a function of a/L (see Fig. 2). Expanding the denomi-
nator for small x, we obtain

P1

2P2
≈ 1 − Ax2 [4K0 (2x) − K0 (x)] . (10)

It is easy to show that P1/2P2 has a minimum when x = xm, i.e.,
when κk1a = xm so a/L = (2/κπ) xm, with xm being determined
by the transcendental equation

8K0 (2xm) − 2K0 (xm) = 8xmK1 (2xm) − xmK1 (xm) . (11)

The corresponding minimum value of P1/2P2 is given by
(

P1

2P2

)
min

= 1 − 1
4

(
ρi − ρe

ρi + ρe

)
Bm, (12)

where Bm depends only on xm. Specifically, numerical determi-
nation gives xm = 0.48 and Bm = 0.19. The important point here
is to note that the shift in P1/2P2 from unity depends entirely
on ρi and ρe, reaching a maximum value of 1

4 Bm = 0.0475 in
the extreme ρi � ρe. Thus dispersion in a thin coronal flux tube
produces, for the kink mode, a shift in P1/2P2 of at most 4.75%,
with a corresponding minimum value of P1/2P2 = 0.9525.
Actual shifts, when the full dispersion relation is used rather than
the approximation, given by Eq. (7), amount to somewhat more
than 4.75% (see Fig. 2), but nonetheless this provides us with
a good guide as to the magnitude of the harmonic shift due to
dispersion induced by structuring across the field.

Fig. 3. P1/2P2 as a consequence of combined longitudinal and trans-
verse structuring. The density is exponentially structured along the loop.
The solid line has a base density that is 8 times the density at the apex(
ρbase/ρapex = 8

)
and the dotted line has ρbase/ρapex = 16. The tube is

also structured radially with cAe (0) = 5
2 cAi (0), corresponding to a tube

density enhancement at the apex of 25/4 times the environment density
there.

2.2. Longitudinal structuring

We now consider the role of structuring along the magnetic field.
This is the effect discussed by Andries et al. (2005b) for a differ-
ent equilibrium profile. Consider again a zero-β plasma, taking
an exponential density profile ρi(z) = ρi(0) exp (z/Λc) for coro-
nal density scale height Λc. The density increases from a value
ρi (0) = ρapex at the loop apex (z = 0) to a value ρi (z = L) = ρbase
at the loop base (z = L), which are related to the density scale
height Λc as

L
Λc
= ln

(
ρbase

ρapex

)
. (13)

In the zero-β limit, Eqs. (1) and (2) can be combined to ob-
tain a single partial differential equation for the perturbed total
pressure (Díaz et al. 2002; Donnelly et al. 2006),

(
∂2

∂t2
− c2

A(z)∇2

)
pT = 0. (14)

We follow the same procedure used in Díaz et al. (2002) to solve
Eq. (14). A sum over the eigenfunctions is required to satisfy the
boundary conditions at the loop surface, which leads to a system
of equations for the coefficients of the eigenfunctions. The con-
dition of having non-trivial solutions gives us the dispersion re-
lation (see Donnelly 2006 for further details on the calculation).

The general solution is a result of a combination of two ef-
fects, radial and longitudinal structuring. Two typical curves for
various ratios ρbase/ρapex and cAe (0) = 2.5cAi (0) are shown in
Fig. 3. We highlight the fact that due to the presence of the ex-
ponential density profile the ratio P1/2P2 is now no longer equal
to unity for any value of a/L. In fact, longitudinal structuring
shifts the ratio even for a/L � 1 (Fig. 4). However, in addi-
tion the effect of the structuring across the loop shifts it further
(though in a similar way to that shown in Fig. 2 for an unstruc-
tured loop) as a/L is increased and the dispersive nature of the
mode is included. Notice in Fig. 3 that the shift due to longi-
tudinal structuring is larger than that due to radial structuring,
especially since for solar coronal loops a/L ≈ 0.01. The previ-
ous case of an unstructured loop follows from Fig. 4 by taking
the limit Λc → ∞, so L/Λc → 0.
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Fig. 4. P1/2P2 as a function of the inverse scale height L/Λc for a coro-
nal loop of fixed length 2L structured exponentially in density. Here we
have taken a loop of half length L = 103a and cAe (0) = 5

2 cAi (0), so
ρi (0) = 25

4 ρe (0).

3. Ratio of P1/2P2 for slow modes:
the Klein-Gordon equation

The Klein-Gordon equation arises in a variety of wave studies
(Roberts 2004): it describes the slow mode in a loop and its
reduction to a one dimensional sound wave in the low β limit
of a rigid magnetic field (Roberts 2006). It also describes both
sausage and kink modes in a thin photospheric flux tube in which
gravitational stratification is allowed for (Rae & Roberts 1982;
Spruit & Roberts 1983). The Klein-Gordon equation may be
written in the form

∂2Q
∂t2
− c2(z)

∂2Q
∂z2
+ Ω2(z)Q = 0, (15)

where Q (z, t) is related to the vertical motion vz by

vz (z, t) =

(
ρ0 (0) c2 (0)
ρ0 (z) c2 (z)

)1/2

Q (z, t) . (16)

For a slow magnetoacoustic mode we have c(z) = cT (z), the tube
speed, and for an acoustic mode we have c(z) = cs (z), the sound
speed; Ω(z) is a cutoff frequency which depends upon gravita-
tional stratification. In general these quantities are a function
of distance along the propagation path (i.e. the loop). Writing
Q(z, t) = Q(z) exp (iωt), for frequency ω, the Klein-Gordon
Eq. (15) gives

d2Q
dz2
+

(
ω2 −Ω2(z)

c2(z)

)
Q = 0. (17)

3.1. Constant c and Ω

The simplest case to discuss is that of a medium for which the
propagation speed c and the cutoff frequency Ω are constants.
This case, for example, arises for an acoustic wave propagat-
ing vertically in an isothermal atmosphere. Then Eq. (17) has
solution

Q(z) = A sin (kz) + B cos (kz) , (18)

where

ω2 = k2c2 + Ω2. (19)

We are interested in standing waves which have Q = 0 at the
ends of a coronal loop. It is convenient to discuss separately
modes that are symmetric and anti-symmetric about the apex of

Fig. 5. P1/2P2 for a slow (or acoustic) mode in an isothermal coronal
loop as a function of loop half-length L in units of the pressure scale
height Λc. The ratio P1/2P2 is given by Eq. (24).

a loop. In a loop of length 2L, straightened out so that z = ±L are
the loop footpoints and z = 0 is the loop apex, the even modes
are of the form

Q(z) = B cos (kz) (20)

and satisfy dQ/dz = 0 at the loop apex (z = 0); the perturba-
tion Q has a maximum or minimum at the apex. At the loop foot-
point z = L we require Q = 0, so kL =

(
n − 1

2

)
π, n = 1, 2, 3, . . . ,

producing even mode frequencies ω = ω2n−1, where

ω2
2n−1 = Ω

2 +

(
n − 1

2

)2
π2c2

L2
· (21)

The case n = 1 produces the fundamental frequency ω1 of the
loop as a whole; n = 2 produces the harmonic ω3 of the loop as
a whole, etc.

Similarly, we may consider the odd modes which leave the
loop apex undisturbed, so Q = 0 at z = 0 and z = L. Then

Q(z) = A sin (kz) (22)

with kL = nπ, n = 1, 2, 3, . . . The odd modes have frequencies
ω = ω2n where

ω2
2n = Ω

2 +
n2π2c2

L2
· (23)

The first harmonic of the loop as a whole has a frequency ω2,
given by Eq. (23) with n = 1.

Thus the ratio of the fundamental and first harmonic frequen-
cies, ω2/ω1, leads to P1/P2, with

P1

2P2
=

⎛⎜⎜⎜⎜⎜⎜⎝ 1 + Ω
2L2

π2c2

1 + 4Ω2L2

π2c2

⎞⎟⎟⎟⎟⎟⎟⎠
1
2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + 1

4π2

(
L
Λc

)2

1 + 1
π2

(
L
Λc

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/2

, (24)

with Λc = c/2Ω. It is immediately clear that 1
2 ≤ P1/2P2 ≤ 1,

becoming one whenΩ = 0. The case whenΩ = 0 corresponds to
the uniform loop in a uniform environment, with no gravitational
stratification.

Figure 5 displays the ratio P1/2P2 as a function of loop half-
length L (measured in units of the density scale height Λc), as
determined by Eq. (24). Stratification of density causes P1/2P2
to fall off from unity, with the effect being most marked in very
long loops (L � Λc). In general, coronal loops have L � Λc,
and the departure of P1/2P2 from unity is only slight. In fact the
magnitude of the shift of P1/2P2 due to stratification by gravity
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for the slow mode for a loop of typical half length (L � Λc)
is comparable to the magnitude of the shift brought about by
radial magnetic structuring for the fast mode. The slow mode is
much less dispersive than the fast mode so the correction due
to radial structuring is even smaller. For example, a loop with
internal density ρi =

25
4 ρe, half-length L = 5 × 104 km and

radius a = 5000 km, so a/L = 1/20, produces a kink mode ratio
of P1/2P2 = 0.995 (see Fig. 2). This may be compared with
an acoustic wave in an isothermal atmosphere with sound speed
c = cs = 200 km s−1 for which the acoustic cutoff frequency is
Ω (= cs/2Λc = γg/2cs) and cs/Ω = 1.78 × 105 km, resulting in
P1/2P2 = 0.988. This is a shift from unity of 0.012 or 1.2%.
Typically, slow or acoustic modes produces a small harmonic
shift due to gravity in all but extremely long loops.

3.2. Non-constant c and Ω

Consider Eq. (15) for the case when c and Ω vary with z. To
be specific, we discuss the case of an acoustic wave propagating
vertically in an atmosphere with a linear temperature profile for
which the propagation speed c is the sound speed cs(z):

c2 = c2
s (z) = c2

apex (1 − αz) . (25)

The sound speed squared c2
s decreases (for α > 0) linearly with

distance z from the loop apex. Suppose that the loop sound speed
decreases from a value capex at the loop apex (z = 0) to cbase at
the loop base z = L. Then

α =
λ2 − 1
λ2L

, λ =
capex

cbase
· (26)

The pressure scale height is Λc(z) = Λc (0) (1 − αz), and the cut-
off frequency is given by (see Lamb 1932; Roberts 2004)

Ω2(z) =
c2

s

4Λ2
c

(
1 − 2Λ

′
c

)
=

⎛⎜⎜⎜⎜⎝ (γg)2

4c2
apex
+
γαg

2

⎞⎟⎟⎟⎟⎠ 1
(1 − αz)

, (27)

where a dash (′) denotes the derivative with respect to z. Writing
u = (1 − αz), Eq. (17) becomes

d2Q
du2
+

⎛⎜⎜⎜⎜⎝ ω2

α2c2
apex

1
u
− M0

α2c2
apex

1
u2

⎞⎟⎟⎟⎟⎠ Q = 0, (28)

where

M0 =
γ2g2

4c2
apex
+
γgα

2
· (29)

The substitutions Q = sY (s) and s = u1/2, with x = β0 s and β2
0 =

4ω2

α2c2
apex

, transform Eq. (28) into Bessel’s equation (Abramowitz &

Stegun 1964)

d2Y
dx2
+

1
x

dY
dx
+

(
1 − ν

2

x2

)
Y = 0. (30)

Accordingly, the solution to Eq. (28) is (James 2003)

Q(z) = (1 − αz)
1
2

⎡⎢⎢⎢⎢⎢⎣AJν

(
2ω
αcapex

(1 − αz)
1
2

)
(31)

+BYν

(
2ω
αcapex

(1 − αz)
1
2

) ⎤⎥⎥⎥⎥⎥⎦,
where

ν = 1 +
γg

αc2
apex
· (32)

Fig. 6. The ratio P1/2P2 for a sound wave in a non-isothermal loop of
length 2L. The sound speed squared varies linearly with distance, falling
from a value capex at the loop apex to cbase

(
=capex/λ

)
at its base. When λ

is close to unity we recover the isothermal case (cf. Fig. 5).

Consider the odd modes, satisfying Q = 0 at the loop apex z = 0
and at the loop base z = L. Then

Jν (x) Yν (λx) − Jν (λx) Yν (x) = 0, (33)

where the arguments of the Bessel functions are:

x =
2ω
αcapex

cbase

capex
, λ =

capex

cbase
· (34)

This is the dispersion relation for the odd acoustic modes in
a gravitationally stratified atmosphere of a non-isothermal loop.

In a similar way, we can obtain the dispersion relation for the
even modes which satisfy Q = 0 at z = L and have dQ/dz = 0 at
z = 0:

Jν (x) Yν (λx) − Jν (λx) Yν (x)

+ (λx)
(
Jν (x) Y

′
ν (λx) − J

′
ν (λx) Yν (x)

)
= 0. (35)

Here a dash denotes the derivative of a Bessel function: J
′
ν(z) =

dJν(z)/dz, etc.
Equations (33) and (35) determine the dimensionless fre-

quency 2ω/αcapex for various values of cbase/capex and ν. The ac-
tual frequency ω is determined once the base sound speed cbase
and the temperature gradient are specified. It is interesting to
note that the structure of Eqs. (33) and (35) remains even in
the absence of gravity (g = 0), though the order ν of the
Bessel functions then reduces to unity. Thus a shift in the ratio
of P1/2P2 occurs as a consequence of non-isothermality, even
if gravity is ignored. Equations (33) and (35) are solved nu-
merically for various values of λ = capex/cbase, the ratio of the
sound speed capex at the loop apex to the sound speed cbase at
its base. Equation (35) provides the period P1 and its first har-
monic gives P2 and is determined by Eq. (33). The ratio P1/2P2
is displayed in Fig. 6. When λ is close to unity, the loop is al-
most isothermal and P1/2P2 is close to unity (though decreasing
with increasing loop length). But for a more strongly structured
sound speed, the shift from unity in P1/2P2 is stronger. For ex-
ample, for a base sound speed of cbase = 100 km s−1 and an apex
sound speed of capex = 150 km s−1, so λ = 1.5, Fig. 6 shows that
P1/2P2 � 0.92 in short loops (L � Λc) and falling to approxi-
mately 0.58 in extremely long loops (L � 10Λc). For loops with
a larger temperature gradient (λ � 1), the immediate deviation
of P1/2P2 from unity becomes more significant for short loops;
however, for long loops the behaviour of P1/2P2 is similar to the
isothermal case.



898 M. P. McEwan et al.: P1/2P2 in the oscillations of coronal loops

3.3. Isobaric loop without gravity

We have seen in the above that structuring along the loop intro-
duces a shift in P1/2P2, even in the absence of gravity (which
reduces the cutoff frequency Ω to zero). Accordingly, consider
Eq. (15) in the absence of a cutoff frequency,Ω = 0:

∂2Q
∂t2
− c2(z)

∂2Q
∂z2
= 0. (36)

This equation can also be deduced from Eqs. (1)–(3) by assum-
ing L � a and using then a stretching coordinate in the radial
direction (see Roberts 2006). The propagation speed in Eq. (36)
can be the sound speed c = cs for a sound wave or the tube
speed c = cT for a slow mode. In either case, we see that c2(z)
is of the form c2(z) = c2(0)ρ0(0)/ρ0(z). Consider, then, the slow
mode, with c = cT, and suppose that the density ρ0(z) increases
exponentially in chromospheric footpoint layers but is otherwise
uniform; thus

c2
T(z) =

⎧⎪⎪⎨⎪⎪⎩
c2

T(0), 0 ≤ |z| ≤ W,

c2
T(0)e(−(|z|−W))/Λc , W ≤ |z| ≤ L.

(37)

The variation in propagation speed cT (z) is confined to footpoint
layers of width (L − W); the scale of variation is determined
by Λc, which is related to the density ρbase in the footpoints and
the density ρapex at the loop apex through

Λc = (L −W) / ln
(
ρbase/ρapex

)
. (38)

Equation (36) may be solved for the profile in Eq. (37), with the
result that even modes satisfy the dispersion relation (see Díaz
& Roberts 2006):

tan
ωW
cT0
=

J1[D(ω)]Y0[E(ω)] − Y1[D(ω)]J0[E(ω)]
J0[D(ω)]Y0[E(ω)] − Y0[D(ω)]J0[E(ω)]

, (39)

where the arguments of the Bessel functions are:

D(ω) =
ω

cT (0)
2Λc, E(ω) =

ω

cT (0)
2Λce(L−W)/(2Λc ). (40)

In fact, Eq. (39) reduces to Eq. (35) in the limit W = 0, as may
be seen as follows. In Sect. 3.2 a fully stratified loop was consid-
ered, so we have W = 0 in Eq. (37). Therefore, the left-handside
of Eq. (39) vanishes, implying that

J1[D(ω)]Y0[E(ω)] − Y1[D(ω)]J0[E(ω)] = 0. (41)

Also, in the absence of gravity Eq. (32) gives ν = 1. By writing
x = D (ω) and using the recurrence relation of Bessel functions,
Z1 (z) + zZ′1 (z) = zZ0 (z), with Z the Bessel function J or Y, we
recover Eq. (35).

We may determine P1/2P2 using dispersion relation Eq. (39)
and a similar relation for the odd modes. The results are dis-
played in Fig. 7. Notice that for small W/L (e.g. W/L = 0.1),
for which the exponential variation covers most of the loop, we
obtain results similar to Fig. 4, as the density profile for each
case is similar. However, a direct comparison with Fig. 4 is not
possible as it refers to the kink mode whereas here we consider
the slow mode. On the other hand, for a thin chromospheric layer
(for which W is comparable to L), P1/2P2 returns to unity unless
the base density is very high.

Finally, comparing these results with those of the
Klein-Gordon equation we can see that the longitudinal structure
alone reproduces the profiles obtained with the inclusion of grav-
ity. For example, comparing Fig. 5 with the plot for a fully strat-
ified loop in Fig. 7 (solid line) we see that the shape is similar,
since the density ratio is related to the inverse scale length L/Λc
by Eq. (38) with W = 0.

Fig. 7. P1/2P2 as a function of the inverse scale height L/Λc, for various
chromospheric layers of dimensionless depth W/L (= 0.1, 0.7, 0.9).

4. Comparison with observational data

We have shown that some properties of the equilibrium can be
obtained by studying the shift of P1/2P2 from unity. Currently,
observations have indicated this effect (without interpretation)
purely for the fast modes of coronal loops. We have shown in
Sect. 2 that the main cause for the shift in these modes lies in the
structure along the magnetic field. For an exponentially stratified
loop the ratio P1/2P2 depends on the density scale height.

As an illustration, we consider the observational data in
Verwichte et al. (2004) (Table II). They reported two periods
in two of their time series (labelled “C” and “D”) which were
interpreted as the fundamental and first harmonics of the loop.
The values of P1/2P2 obtained from the wavelet analysis are
(Verwichte et al. 2004)

P1

2P2

∣∣∣∣∣
C
= 0.91 ± 0.16,

P1

2P2

∣∣∣∣∣
D
= 0.82 ± 0.15, (42)

in which the error bars have been calculated by the usual formu-
lae for propagation of errors in derived magnitudes. In case C
the value of the shift lies in the uncertainty range, but in case D
the observations clearly point to a shift in P1/2P2. Using Fig. 4,
we deduce

L
Λc

∣∣∣∣∣
C
= 1.0 ± 2.2,

L
Λc

∣∣∣∣∣
D
= 2.2 ± 2.7. (43)

Hence, using the loop lengths given in Verwichte et al. (2004),
namely 2L = 218 Mm for case C and 2L = 228 Mm for case D,
we obtain Λc = 109 ± 240 Mm for case C and Λc = 52 ±
62 Mm for case D. Unfortunately, in both cases the relative er-
rors are large because of the flatness of the curves in Fig. 4, but
these values nonetheless indicate the potential for what can be
achieved. The equilibrium density ratio ρbase/ρapex can also be
obtained with Eq. (13), giving 2.8 for case C and 8.7 for case D,
but the error bars are very large.

Notice that this procedure gives us a value of the ratio L/Λc
which is independent of other considerations. This is an im-
portant advantage over other quantities deduced from coronal
seismology, such as the determination of the magnetic field
strength (Nakariakov & Ofman 2001), for which the values of
other unknowns (e.g. the equilibrium coronal density) need to
be assumed.

5. Discussion and conclusion

In this work we have explored the various effects which cause the
ratio P1/2P2 to depart from unity, its value in a homogeneous
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medium. Magnetic structuring, due principally to density con-
trast between the interior and exterior of a loop, causes fast
magnetoacoustic waves to be dispersive, and this manifests it-
self in the ratio P1/2P2. Longitudinal structuring or stratification
has a more significant effect than radial structuring, producing
a larger departure from unity in P1/2P2. Longitudinal structure
has also been considered by Andries et al. (2005b). We have
illustrated the effect for a simple flux tube with a discrete den-
sity profile, but we can anticipate similar results for any radial
structure (e.g. the Epstein profile). Of course, other effects such
as magnetic flux tube expansion or non-adiabatic damping may
also produce a shift in P1/2P2 from unity; however, such effects
are left for a future study.

Slow magnetoacoustic waves are only very weakly disper-
sive, so shifts in P1/2P2 due to radial structuring are small.
However, longitudinal structuring or stratification has a more
important role here too, reducing P1/2P2 below unity (becom-
ing 0.5 in the limit of an infinitely long loop). The presence of
a gravitational force (as opposed to longitudinal structuring by
whatever effect) complicates the behaviour of P1/2P2, but the
effects are generally small in the corona (because of the high
pressure scale height).

The results presented here can be used to extract informa-
tion about the equilibrium state of a coronal loop. Previous work
(e.g. Nakariakov & Ofman 2001) have studied the relevance for
coronal seismology of the fundamental period, which allows us
to deduce global properties of the loop, such as the mean den-
sity or the magnetic field strength. However, observational mea-
surements of P1/2P2 gives information about smaller scales, and
we have used this to estimate the structure’s length scale for
the fast mode (or the ratio between the footpoint and apex den-
sity). In principle, if all the harmonics could be observed, we
could invert the problem and obtain a density profile (as it is cur-
rently done in helioseismology, where thousands of modes are
reported). But with two coronal modes only currently observed
we are not able to obtain such detailed information. Our method
can also be applied to slow modes, but there are currently no
observations of P1/2P2 for slow modes. On the other hand, it is
interesting to note that more than one mode has been detected in
prominences (Régnier et al. 2001; Pouget et al. 2006). Currently,
only information relating to the fundamental harmonics of each
prominence oscillation family is used for seismology, but similar
techniques could be applied in the future for extracting informa-
tion from the first (and higher) harmonics.

In conclusion, we have demonstrated how the individual
contributions cause a deviation of P1/2P2 from unity, an effect
highlighted in Andries et al. (2005b). Lateral structure, longitu-
dinal structure and density stratification all play a part in forming
P1/2P2, but we conclude that longitudinal structure is the key in-
gredient for magnetoacoustic modes.
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Appendix A: Derivation of Eqs. (1)–(3)

We derive Eqs. (1)–(3), following Díaz (2004).
The starting point is the set of linearised ideal MHD equa-

tions for a uniform magnetic field B0 = B0 ẑ, in absence of grav-
ity and with constant plasma pressure and a density profile that
is stratified along the z-axis, ρ0 (z):

∂ρ

∂t
+ ρ0 (z) (∇ · u) + (u · ∇) ρ0 (z) = 0, (A.1)

∂B
∂t
= ∇ × (u × B0) , (A.2)

ρ0 (z)
∂u

∂t
= −∇pT +

1
µ

(B0 · ∇) B, (A.3)

∂p
∂t
+ (u · ∇) p0 = c2

s

(
∂ρ

∂t
+ (u · ∇) ρ0 (z)

)
. (A.4)

Here B denotes the perturbed magnetic field, pT is the total pres-
sure perturbation, u = u⊥ + vz ẑ is the perturbation flow and ρ the
perturbed density.

The induction Eq. (A.2), may be expanded to yield

∂B
∂t
= B0

∂u

∂z
− B0 ẑ(∇ · u), (A.5)

in which the assumption of uniform magnetic field B0 has been
used.

In the following development, the symbol ⊥ denotes the
components of the perturbed quantities and gradients perpen-
dicular to B0. Using Eq. (A.5), the perpendicular component of
Eq. (A.3) can be rewritten as

ρ0

[
∂2

∂t2
− c2

A(z)
∂2

∂z2

]
u⊥ + ∇⊥ ∂pT

∂t
= 0, (A.6)

where cA =

√
B2

0/µρ0(z) denotes the Alfvén speed.
Before dealing with the parallel component another expres-

sion for the perturbed total pressure is required. From Eq. (A.4)
we have

∂p
∂t
= −(u · ∇)p0(z) − ρ0(z)c2

s (z)∇ · u. (A.7)

Using the definition of the magnetic pressure and Eq. (A.5) we
also obtain

∂pm

∂t
=

B0

µ

∂Bz

∂t
= −ρ0c2

A(z)∇⊥ · u⊥. (A.8)

Equations (A.7) and (A.8) then give an expression for the per-
turbed total pressure, namely

∂pT

∂t
=
∂p
∂t
+
∂pm

∂t
= −vz ∂p0

∂z
− ρ0(z)cs

2(z)
∂vz
∂z

−ρ0c2
f (z)∇⊥ · u⊥ = ρ0(z)c2

A(z)
∂vz
∂z
− ρ0c2

f (z)∇ · u, (A.9)

where cs(z) =
√
γp0/ρ0(z) is the sound speed and c2

f = cs
2 + c2

A.
In the last equality of Eq. (A.9) it has also been assumed that p0
is constant, so its derivative along the field vanishes.

Finally, the component of Eq. (A.3) along the field gives

ρ0(z)
∂2vz

∂t2
+
∂

∂z
∂pT

∂t
− B2

0

µ

∂2vz

∂z2
= −B2

0

µ

∂

∂z
(∇ · u) =

−ρ0(z)c2
A(z)
∂

∂z

⎡⎢⎢⎢⎢⎣ c2
A(z)

cf
2(z)
∂vz
∂z
− 1
ρ0(z)cf

2(z)
∂pT

∂t

⎤⎥⎥⎥⎥⎦ · (A.10)

Now cs(z), cA(z) and cf (z) depend on z via the equilibrium
density, the equilibrium magnetic field strength being constant.
Therefore, for our equilibrium model the products

ρ0(z)c2
A(z) =

B2
0

µ
, ρ0(z)cs

2(z) = γp0, ρ0c2
f (z),

c2
A(z)

c2
f (z)

(A.11)

are all constants so the derivative in Eq. (A.10) only affects vz
and pT. Thus Eq. (A.10) can be recast in the form:

ρ0

[
∂2

∂t2
− c2

T(z)
∂2

∂z2

]
vz +

c2
s (z)

c2
f (z)

∂

∂z

(
∂pT

∂t

)
= 0, (A.12)

where c−2
T = cs

−2 + c−2
A .

Equations (A.6), (A.9) and (A.10) are Eqs. (1)–(3). They
are formally the same as in Roberts (1991), although in that
paper the details of the derivation are slightly different: they
were deduced with the assumption of Cartesian coordinates and
with B0(x) and ρ0(x) instead of ρ0(z).

Since β � 1 in the solar corona, we can restrict ourselves
to studying the oscillatory modes in the low-beta limit. This as-
sumption implies cs → 0, cT → 0 and cf → cA. Now, select-
ing the velocity components as our dependent variables leads
to a pair of coupled partial differential equations, although by
choosing the total pressure perturbation, pT, as our dependent
variable a single partial differential equation is obtained.
First of all, from Eq. (A.10) in the low-beta limit we have vz = 0,
pointing out that the slow mode is removed in this limit. Then,
we take the gradient in the perpendicular plane of Eq. (A.6) and
use ∇⊥ρ0(z) = 0 and ∇⊥(ρ0(z)c2

A(z)) = 0, giving

ρ0(z)

[
∂2

∂t2
− c2

A(z)
∂2

∂z2

]
∇⊥ · u⊥ + ∇⊥·

(
∇⊥ ∂pT

∂t

)
= 0. (A.13)

Next, we write Eq. (A.9) in the low-beta limit,

∂pT

∂t
= −ρ0c2

A(z)∇⊥ · u⊥, (A.14)

and then we may eliminate the velocity components in
Eq. (A.13), which can be cast as
[
∂2

∂t2
− c2

A(z)
∂2

∂z2

]
∂pT

∂t
− c2

A(z)∇⊥ ·
(
∇⊥ ∂pT

∂t

)
= 0. (A.15)

Thus, we have only one partial differential equation to solve. In
any orthonormal coordinate system (such as the cylindrical and
Cartesian ones) in which one of the basis vectors points in the
z-direction, the operator ∇⊥ ·∇⊥ is equal to ∇2⊥. Thus, finally, we
conclude that[
∂2

∂t2
− c2

A(z)∇2

]
pT = 0, (A.16)

which is Eq. (14).




