380 research outputs found

    A closer look at lightning reveals needle-like structures

    Get PDF
    Structural features have been identified on positively charged lightning channels that are not present on negatively charged ones. The discovery could explain why these two types of channel have different behaviours.Peer ReviewedPostprint (author's final draft

    Melatonin treatment improves kidding percentage in Angora does

    Full text link

    Inversion of Multi-Station Schumann Resonance Background Records for Global Lightning Activity in Absolute Units

    Get PDF
    Every lightning flash contributes energy to the TEM mode of the natural global waveguide that contains the Earth’s Schumann resonances. The modest attenuation at ELF (0.1 dB/Mm) allows for the continuous monitoring of the global lightning with a small number of receiving stations worldwide. In this study, nine ELF receiving sites (in Antarctica (3 sites), Hungary, India, Japan, Poland, Spitsbergen and USA) are used to provide power spectra at 12-minute intervals in two absolutely calibrated magnetic fields and occasionally, one electric field, with up to five resonance modes each. The observables are the extracted modal parameters (peak intensity, peak frequency and Q-factor) for each spectrum. The unknown quantities are the geographical locations of three continental lightning ‘chimneys’ and their lightning source strengths in absolute units (C2 km2/sec). The unknowns are calculated from the observables by the iterative inversion of an evolving ‘sensitivity matrix’ whose elements are the partial derivatives of each observable for all receiving sites with respect to each unknown quantity. The propagation model includes the important day-night asymmetry of the natural waveguide. To overcome the problem of multiple minima (common in inversion problems of this kind), location information from the World Wide Lightning Location Network has been used to make initial guess solutions based on centroids of stroke locations in each chimney. Results for five consecutive days in 2009 (Jan 7-11) show UT variations with the African chimney dominating on four of five days, and America dominating on the fifth day. The amplitude variations in absolute source strength exceed that of the ‘Carnegie curve’ of the DC global circuit by roughly twofold. Day-to-day variations in chimney source strength are of the order of tens of percent. Examination of forward calculations performed with the global inversion solution often show good agreement with the observed diurnal variations at individual receiving sites, lending confidence to the 3-chimney model for global lightning

    On the TGF/lightning ratio asymmetry

    Get PDF
    Africa is one of the most productive lightning regions on Earth, yet it has a lower TGF-to-lightning ratio especially compared with Central America. In this paper we have analyzed the global distribution of different meteorological parameters in order to explain the TGF/lightning ratio asymmetry. We show here that a drier surface and larger CAPE in Africa may produce thunderstorms with intense electric charge regions but elevated in the atmosphere and closer to each other, which allows for higher flash rates and less energetic, shorter and smaller flashes. The results we present here suggest that continental thunderstorms in Africa more rarely fulfill the lightning and thundercloud requirements for TGF production inferred from observations and models.Peer ReviewedPostprint (published version

    Aliasing of the Schumann resonance background signal by sprite-associated Q-bursts

    Get PDF
    The Earth's naturally occurring Schumann resonances (SR) are composed of a quasi-continuous background component and a larger-amplitude, short-duration transient component, otherwise called ‘Q-burst’ (Ogawa et al., 1967). Sprites in the mesosphere are also known to accompany the energetic positive ground flashes that launch the Q-bursts (Boccippio et al., 1995). Spectra of the background Schumann Resonances (SR) require a natural stabilization period of ~10–12 min for the three conspicuous modal parameters to be derived from Lorentzian fitting. Before the spectra are computed and the fitting process is initiated, the raw time series data need to be properly filtered for local cultural noise, narrow band interference as well as for large transients in the form of global Q-bursts. Mushtak and Williams (2009) describe an effective technique called Isolated Lorentzian (I-LOR), in which, the contributions from local cultural and various other noises are minimized to a great extent. An automated technique based on median filtering of time series data has been developed. These special lightning flashes are known to have greater contribution in the ELF range (below 1 kHz) compared to general negative CG strikes (Huang et al., 1999; Cummer et al., 2006). The global distributions of these Q-bursts have been studied by Huang et al. (1999) Rhode Island, USA by wave impedance methods from single station ELF measurements at Rhode Island, USA and from Japan Hobara et al. (2006). The present work aims to demonstrate the effect of Q- bursts on SR background spectra using GPS time-stamped observation of TLEs. It is observed that the Q-bursts selected for the present work do alias the background spectra over a 5-s period, though the amplitudes of these Q- bursts are far below the background threshold of 16 Core Standard Deviation (CSD) so that they do not strongly alias the background spectra of 10–12 min duration. The examination of one exceptional Q-burst shows that appreciable spectral aliasing can occur even when 12-min spectral integrations are considered. The statistical result shows that for a 12-min spectrum, events above 16 CSD are capable of producing significant frequency aliasing of the modal frequencies, although the intensity aliasing might have a negligible effect unless the events are exceptionally large (~200 CSD). The spectral CSD methodology may be used to extract the time of arrival of the Q-burst transients. This methodology may be combined with a hyperbolic ranging, thus becoming an effective tool to detect TLEs globally with a modest number of networked observational stations.Peer ReviewedPostprint (published version

    Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit

    Get PDF
    ABSTRACT The long-standing mainstay of support for C. T. R. Wilson's global circuit hypothesis is the similarity between the diurnal variation of thunderstorm days in universal time and the Carnegie curve of electrical potential gradient. This rough agreement has sustained the widespread view that thunderstorms are the ''batteries'' for the global electrical circuit. This study utilizes 10 years of Tropical Rainfall Measuring Mission (TRMM) observations to quantify the global occurrence of thunderstorms with much better accuracy and to validate the comparison by F. J. W. Whipple 80 years ago. The results support Wilson's original ideas that both thunderstorms and electrified shower clouds contribute to the DC global circuit by virtue of negative charge carried downward by precipitation. First, the precipitation features (PFs) are defined by grouping the pixels with rain using 10 years of TRMM observations. Thunderstorms are identified from these PFs with lightning flashes observed by the Lightning Imaging Sensor. PFs without lightning flashes but with a 30-dBZ radar echotop temperature lower than 2108C over land and 2178C over ocean are selected as possibly electrified shower clouds. The universal diurnal variation of rainfall, the raining area from the thunderstorms, and possibly electrified shower clouds in different seasons are derived and compared with the diurnal variations of the electric field observed at Vostok, Antarctica. The result shows a substantially better match from the updated diurnal variations of the thunderstorm area to the Carnegie curve than Whipple showed. However, to fully understand and quantify the amount of negative charge carried downward by precipitation in electrified storms, more observations of precipitation current in different types of electrified shower clouds are required

    The Identification and Verification of Hazardous Convective Cells Over Oceans Using Visible and Infrared Satellite Observations

    Get PDF
    Three algorithms based on geostationary visible and infrared (IR) observations are used to identify convective cells that do (or may) present a hazard to aviation over the oceans. The performance of these algorithms in detecting potentially hazardous cells is determined through verification with Tropical Rainfall Measuring Mission (TRMM) satellite observations of lightning and radar reflectivity, which provide internal information about the convective cells. The probability of detection of hazardous cells using the satellite algorithms can exceed 90% when lightning is used as a criterion for hazard, but the false-alarm ratio with all three algorithms is consistently large (40%), thereby exaggerating the presence of hazardous conditions. This shortcoming results in part from the algorithms’ dependence upon visible and IR observations, and can be traced to the widespread prevalence of deep cumulonimbi with weak updrafts but without lightning over tropical oceans, whose origin is attributed to significant entrainment during ascent
    corecore