3,738 research outputs found

    Notes

    Get PDF

    Weather research requirements to improve space launch from Cape Canaveral Air Force Station and NASA Kennedy Space Center

    Get PDF
    Weather has a large affect on operations at Cape Canaveral Air Force Station (CCAFS) and NASA Kennedy Space Center (KSC). Weather is the leading source of scrubs and delays to space launch from CCAFS/KSC. Weather has an even larger impact on ground processing as space launch vehicles and payloads are prepared in the months before space launch. Many of those operations are very sensitive to weather. In addition, the weather in Florida is notoriously difficult to predict, especially during the summer when rapid deep convection can occur in minutes. Finally, the weather can be extremely subtle in this area during summer, e.g. exceedingly weak low-level boundaries usually determine where thunderstorms form. The Air Force 45th Weather Squadron (45WS) provides comprehensive weather support to CCAFS/KSC. The 45WS uses one of the most dense and unique suite of weather sensors in operational meteorology to provide that weather support. The 45 WS has an active program of facilitating research and transitioning that research into operations. These efforts include working with universities, government agencies, and contractors. Of special note is NASA’s Applied Meteorology Unit, a NASA funded organization that performs technology transition to improve weather support to America’s space program. There are many areas of research that would help 45WS improve their weather support: lightning cessation, lightning onset, lightning detection/warnings/reports, convective winds, elevated peak winds in winter, and many others. The 45WS especially wants research to improve applications of two tools: local numerical models and dual polarization radar. This paper will also discuss opportunities for improved space weather support

    Effect of conjugated bile salts on antibiotic susceptibility of bile salt-tolerant Lactobacillus and Bifidobacterium isolates.

    Get PDF
    Virtually every antibiotic may cause in vivo alterations in the number, level, and composition of the indigenous microbiotae. The degree to which the microbiotae are disturbed depends on many factors. Although bile may augment antibiotic activity, studies on the effect of bile on the antibiotic susceptibility of indigenous and exogenous probiotic microorganisms are lacking. It was against this background that the antibiotic susceptibility of 37 bile salt-tolerant Lactobacillus and 11 Bifidobacterium isolates from human and other sources was determined in the presence of 0.5% wt/wt oxgall (conjugated bile salts). Oxgall did not affect the intrinsic resistance of lactobacilli to metronidazole (5 microg), vancomycin (30 microg), and cotrimoxazole (25 microg), whereas it resulted in a complete loss of resistance to polymyxin B (300 microg) and the aminoglycosides gentamicin (10 microg), kanamycin (30 microg), and streptomycin (10 microg) for most strains studied (P < 0.001). Oxgall did not affect the intrinsic resistance of bifidobacteria to metronidazole and vancomycin, whereas polymyxin B and co-trimoxazole resistance was diminished (P < 0.05) and aminoglycoside resistance was lost (P < 0.001). Seven lactobacilli, but no bifidobacteria strain, showed unaltered intrinsic antibiotic resistance profiles in the presence of oxgall. Oxgall affected the extrinsic susceptibility of lactobacilli and bifidobacteria to penicillin G (10 microg), ampicillin (10 microg), tetracycline (30 microg), chloramphenicol (30 microg), erythromycin (15 microg), and rifampicin (5 microg) in a source- and strain-dependent manner. Human strain-drug combinations of lactobacilli (P < 0.05) and bifidobacteria (P < 0.01) were more likely to show no change or decreased susceptibility compared with other strain-drug combinations. The antimicrobial activity spectra of polymyxin B and the aminoglycosides should not be considered limited to gram-negative bacteria but extended to include gram-positive genera of the indigenous and transiting microbiotae in the presence of conjugated bile salts. Those lactobacilli (7 of 37) that show unaltered intrinsic and diminished extrinsic antibiotic susceptibility in the presence of oxgall may possess greater upper gastrointestinal tract transit tolerance in the presence of antibiotics

    Effect of temperature on the rate of ageing : an experimental study of the Blowfly Calliphora stygia

    Get PDF
    All organisms age, the rate of which can be measured by demographic analysis of mortality rates. The rate of ageing is thermally sensitive in ectothermic invertebrates and we examined the effects of temperature on both demographic rates of ageing and on cellular senescence in the blowfly, Calliphora stygia. The short lifespan of these flies is advantageous for demographic measurements while their large body size permits individual-based biochemical characterisation. Blowflies maintained at temperatures from 12°C to 34°C had a five to six-fold decrease in maximum and average longevity, respectively. Mortality rates were best described by a two-phase Gompertz relation, which revealed the first-phase of ageing to be much more temperature sensitive than the second stage. Flies held at low temperatures had both a slower first-phase rate of ageing and a delayed onset of second-phase ageing, which significantly extended their longevity compared with those at high temperatures. Blowflies that were transferred from 29°C to 15°C had higher first-phase mortality rates than those of flies held at constant 15°C, but their onset of second-phase ageing was deferred beyond that of flies held constantly at this temperature. The accumulation of fluorescent AGE pigment, a measure of cellular oxidative damage, increased steadily over time in all blowflies, irrespective of the temporal pattern of mortality. Pigment accumulated steadily during periods of ‘negligible senescence’, as measured by minimal rate of mortality, and the rate of accumulation was significantly affected by temperature. Thus accumulation of AGE pigment is more representative of chronological age than a reflection of biological age or a cause of mortality

    Antibiotic susceptibility of potentially probiotic Lactobacillus species.

    Get PDF
    In recent years, the time-honored reputation of lactobacilli as promoters of gastrointestinal and female urogenital health has been qualified. This has occurred due to a rare association with human infection in the presence of certain predisposing factors and their potential to act as a source of undesirable antibiotic resistance determinants to other members of the indigenous microbiota. This necessitates greater caution in their selection for use in microbial adjunct nutrition and disease management (prophylaxis and therapy). It was against this background that 46 Lactobacillus strains from human and dairy sources were assayed for susceptibility to 44 antibiotics. All strains were resistant to a group of 14 antibiotics, which included inhibitors of cell wall synthesis (cefoxitin [30 microg] and aztreonam [30 microg]), protein synthesis (amikacin [30 microg], gentamicin [10 microg], kanamycin [30 microg], and streptomycin [10 microg]), nucleic acid synthesis (norfloxacin [10 microg], nalidixic acid [30 microg], sulphamethoxazole [100 microg], trimethoprim [5 microg], co-trimoxazole [25 microg], and metronidazole [5 microg]), and cytoplasmic membrane function (polymyxin B [300 microg] and colistin sulphate [10 microg]). All strains were susceptible to tetracycline (30 microg), chloramphenicol (30 microg), and rifampicin (5 microg). Four human strains and one dairy strain exhibited atypical resistance to a penicillin, bacitracin (10 microg), and/or nitrofurantoin (300 microg). One human strain was also resistant to erythromycin (15 microg) and clindamycin (2 microg). These resistances may have been acquired due to antibiotic exposure in vivo, but conclusive evidence is lacking in this regard. Seven microorganism-drug combinations were evaluated for beta-lactamase activity using synergy and nitrocefin tests. The absence of activity suggested that cell wall impermeability appeared responsible for beta-lactam resistance. The occurrence of a minority of lactobacilli with undesirable, atypical resistance to certain antibiotics demonstrates that not all strains are suitable for use as probiotics or bacteriotherapeutic agents. The natural resistance of lactobacilli to a wide range of clinically important antibiotics may enable the development of antibiotic/probiotic combination therapies for such conditions as diarrhea, female urogenital tract infection, and infective endocarditis

    Quality and safety of milk from farm to dairy product

    Get PDF
    End of Project ReportNeutrophils (PMN cells) constitute one of the main cell types in milk. Increased PMN level is an indication of mastitis. An ELISA method has been developed to determine PMN levels in milk. This may allow (in addition to somatic cell count [SCC]) selection of infected quarters at drying off, thereby allowing antibiotic therapy to be limited to those quarters. PMN counts may also be used to select milk for processing. Little information is available on the contribution of different somatic cells in milk to cheese-making efficiency. The overall objective of this study was to establish the influence of the quality of raw milk, as determined by somatic cell level and type, on milk biochemistry and cheese quality. The work firstly included modification to a method for an enzyme immunoassay, which could enumerate milk PMN. Subsequently, the impact of somatic cell and PMN content on biochemistry of individual udder quarter milks and simulated bulk cow milks, and quality of cheese manufactured from such milks was investigated. The somatic cell and PMN content of bulk herd milks was also investigated. The modification to the test of O’Sullivan et al (1992) allowed the accurate measurement of PMN levels in milk. The strong relationship or correlation between SCC and PMN of 92% in the individual quarter milks has confirmed previous preliminary data. This is important since PMN in conjunction with SCC may now provide a more reliable method of selecting milks for processing. The reduction in casein at elevated SCC and PMN levels may have resulted in the trend towards deteriorated milk coagulation properties. A very heterogeneous selection of proteolysis patterns was observed in the miniature cheeses. This substantial difference in proteolytic activity in milk from different quarters had not been observed previously. Enzymes associated with the cells in high SCC milk were retained in the cheese curd and thus, contributed to proteolysis during ripening. Addition of low volumes of high SCC milk had an obvious impact on proteolysis patterns and cheese ripening. However, such trends were generally less clear with increasing PMN milk than those observed for addition of high SCC milk. The poor correlation between SCC and PMN obtained in both cow and herd bulk milks, compared to the correlation in quarter milks was probably due to the mixing of high and low SCC milks from either quarters or cows. Thus, the true effect of PMN may not be observed in bulk herd milk but may still have an adverse effect on milk quality. Whether elevated bulk milk SCC and PMN level is due to milk from a smaller number of cows with extremely high SCC/PMN being included with milk from a predominantly healthy herd, or, to large numbers of cows with sub-clinical infections, probably contributes to variation in the effects of SCC/PMN on dairy products

    Novel liquid crystalline organic semiconducting oligomers incorporating N-heterocyclic carbazole moieties for fluorescent OLEDs

    Get PDF
    A novel class of nematic liquid crystalline organic semiconducting oligomers incorporating N-heterocyclic carbazole moieties has been synthesised using simple and highly efficient reaction pathways. The electroluminescent colour of these novel oligomers can be varied in a controlled manner by molecular design. The values of the ionization potential and the electron affinity of these electroluminescent oligomers can also be matched by structural design to the HOMO energy level of the electron-blocking layer and the LUMO energy level of electron-transporting layer in the OLEDs to create low charge-injection barriers for electrons and holes, respectively leading to electroluminescence with an efficacy up to 4.1 cd A-1

    Resolution limits in practical digital holographic systems

    Get PDF
    We examine some fundamental theoretical limits on the ability of practical digital holography DH systems to resolve detail in an image. Unlike conventional diffraction-limited imaging systems, where a projected image of the limiting aperture is used to define the system performance, there are at least three major effects that determine the performance of a DH system: i The spacing between adjacent pixels on the CCD, ii an averaging effect introduced by the finite size of these pixels, and iii the finite extent of the camera face itself. Using a theoretical model, we define a single expression that accounts for all these physical effects. With this model, we explore several different DH recording techniques: off-axis and inline, considering both the dc terms, as well as the real and twin images that are features of the holographic recording process. Our analysis shows that the imaging operation is shift variant and we demonstrate this using a simple example. We examine how our theoretical model can be used to optimize CCD design for lensless DH capture. We present a series of experimental results to confirm the validity of our theoretical model, demonstrating recovery of super- Nyquist frequencies for the first time

    Resolution limits in practical digital holographic systems

    Get PDF
    We examine some fundamental theoretical limits on the ability of practical digital holography DH systems to resolve detail in an image. Unlike conventional diffraction-limited imaging systems, where a projected image of the limiting aperture is used to define the system performance, there are at least three major effects that determine the performance of a DH system: i The spacing between adjacent pixels on the CCD, ii an averaging effect introduced by the finite size of these pixels, and iii the finite extent of the camera face itself. Using a theoretical model, we define a single expression that accounts for all these physical effects. With this model, we explore several different DH recording techniques: off-axis and inline, considering both the dc terms, as well as the real and twin images that are features of the holographic recording process. Our analysis shows that the imaging operation is shift variant and we demonstrate this using a simple example. We examine how our theoretical model can be used to optimize CCD design for lensless DH capture. We present a series of experimental results to confirm the validity of our theoretical model, demonstrating recovery of super- Nyquist frequencies for the first time
    • …
    corecore