550 research outputs found

    Exact Synthesis of 3-qubit Quantum Circuits from Non-binary Quantum Gates Using Multiple-Valued Logic and Group Theory

    Get PDF
    We propose an approach to optimally synthesize quantum circuits from non-permutative quantum gates such as Controlled-Square-Root–of-Not (i.e. Controlled-V). Our approach reduces the synthesis problem to multiple-valued optimization and uses group theory. We devise a novel technique that transforms the quantum logic synthesis problem from a multi-valued constrained optimization problem to a permutable representation. The transformation enables us to utilize group theory to exploit the symmetric properties of the synthesis problem. Assuming a cost of one for each two-qubit gate, we found all reversible circuits with quantum costs of 4, 5, 6, etc, and give another algorithm to realize these reversible circuits with quantum gates. The approach can be used for both binary permutative deterministic circuits and probabilistic circuits such as controlled random number generators and hidden Markov models

    Board-level multiterminal net assignment

    Get PDF

    Solar Powered Multipurpose Remotely Powered Aircraft

    Get PDF
    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as an attractive alternative source of power. The focus was to design and construct a solar powered, remotely piloted vehicle to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design included minimizing the power requirements and maximizing the strength-to-weight and lift-to-drag ratios. Given the design constraints, Surya (the code-name given to the aircraft), is a lightweight aircraft primarily built using composite materials and capable of achieving level flight powered entirely by solar energy

    Progression of mitral regurgitation in rheumatic valve disease : role of left atrial remodeling

    Get PDF
    Introduction: Mitral regurgitation (MR) is the most common valve abnormality in rheumatic heart disease (RHD) often associated with stenosis. Although the mechanism by which MR develops in RHD is primary, longstanding volume overload with left atrial (LA) remodeling may trigger the development of secondary MR, which can impact on the overall progression of MR. This study is aimed to assess the incidence and predictors of MR progression in patients with RHD. Methods: Consecutive RHD patients with non-severe MR associated with any degree of mitral stenosis were selected. The primary endpoint was a progression of MR, which was defined as an increase of one grade in MR severity from baseline to the last follow-up echocardiogram. The risk of MR progression was estimated accounting for competing risks. Results: The study included 539 patients, age of 46.2 ± 12 years and 83% were women. At a mean follow-up time of 4.2 years (interquartile range [IQR]: 1.2–6.9 years), 54 patients (10%) displayed MR progression with an overall incidence of 2.4 per 100 patient-years. Predictors of MR progression by the Cox model were age (adjusted hazard ratio [HR] 1.541, 95% CI 1.222–1.944), and LA volume (HR 1.137, 95% CI 1.054–1.226). By considering competing risk analysis, the direction of the association was similar for the rate (Cox model) and incidence (Fine-Gray model) of MR progression. In the model with LA volume, atrial fibrillation (AF) was no longer a predictor of MR progression. In the subgroup of patients in sinus rhythm, 59 had an onset of AF during follow-up, which was associated with progression of MR (HR 2.682; 95% CI 1.133–6.350). Conclusions: In RHD patients with a full spectrum of MR severity, progression of MR occurs over time is predicted by age and LA volume. LA enlargement may play a role in the link between primary MR and secondary MR in patients with RHD
    • …
    corecore