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Exact Synthesis of 3-qubit Quantum Circuits from Non-binary 
Quantum Gates Using Multiple-Valued Logic and Group Theory 

 

Guowu Yang, William N. N. Hung, Xiaoyu Song and Marek A. Perkowski   

Dept. ECE, Portland State University, Oregon, USA. 
 

ABSTRACT 

We propose an approach to optimally synthesize quantum 
circuits from non-permutative quantum gates such as 
Controlled-Square-Root–of-Not (i.e. Controlled-V). Our 
approach reduces the synthesis problem to multiple-valued 
optimization and uses group theory. We devise a novel 
technique that transforms the quantum logic synthesis 
problem from a multi-valued constrained optimization 
problem to a permutable representation. The transformation 
enables us to utilize group theory to exploit the symmetric 
properties of the synthesis problem. Assuming a cost of one 
for each two-qubit gate, we found all reversible circuits 
with quantum costs of 4, 5, 6, etc, and give another 
algorithm to realize these reversible circuits with quantum 
gates. The approach can be used for both binary 
permutative deterministic circuits and probabilistic circuits 
such as controlled random number generators and hidden 
Markov models. 

Index Terms: Reversible Logic, Boolean Functions, Logic 
Synthesis, Group Theory. 

 
 

1. Introduction 
 
  Reversible logic plays an important role in the synthesis of quantum computing 

circuits. The synthesis of reversible logic circuits using elementary quantum gates is 

different from classical (non-reversible) logic synthesis. In this paper, we propose a novel 

approach to optimally synthesize quantum circuits by group theory where the primary 

inputs are purely binary (outputs are not necessarily binary, they may be random binary 

after measurement of mixed or superpositioned states).  There are some works [5,6,8,10] 

on reversible logic synthesis using permutative reversible gates (Toffoli, Fredkin, or 

Feynman gates). However, these gates have different quantum costs (e.g. the cost of 
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Feynman is lower than that of Toffoli). Therefore, finding the smallest number of gates to 

synthesize a reversible circuit does not necessarily result in a quantum implementation 

with the lowest cost (in terms of quantum gates). The exact minimal costs for NMR [1] 

realization of several quantum gates from truly quantum (not permutative) gates such as 

Pauli Rotations or Controlled-Square-Root-of-Not have been calculated [4]. They can be 

also calculated for other quantum technologies. In this paper, we focus on synthesizing 

reversible circuits to quantum implementations with the lowest cost. The method is 

general and enumerative. It can be adapted to any particular numerical values of costs. 

These circuits include common reversible gates that can be used at higher levels of logic 

synthesis or for technology mapping. We reduce the problem of minimum-cost synthesis 

of quantum circuits from certain subset of quantum gates and binary inputs (in particular, 

the permutative circuits) to multiple-valued/binary logic formulation. This approach 

reduces the search space and the search algorithm complexity. We formulate the quantum 

logic synthesis problem via group theory. Our method guarantees to find the minimum 

quantum-cost implementation with truly quantum gates (given a set of specified 

component gates). In contrast to previous works, which either use permutative reversible 

gates to design permutative circuits or universal quantum gates to design quantum 

circuits, we use a subset of quantum gates to design permutative binary circuits that can 

be either deterministic (when output symbols are restricted to pure states) or probabilistic 

(when there is no such constraint imposed on the output symbols). The paper is self-

contained and no knowledge of quantum mechanics or group theory is necessary to 

understand it. 

 
2. Background 

 
In quantum computing [1], the fundamental information unit is a qubit. The state of a 

qubit is a superposition of 0 and 1 states, also denoted as |0〉 and |1〉 respectively. The 

qubit state q can be represented by the equation: q = α|0〉 + β|1〉, where α and β are both 

complex numbers and |α|2+|β|2=1. |α|2 and |β|2 are probabilities of measurements of pure 

states 0 and 1, respectively. Observe thus that if the complex numbers are 1/√2 then pure 

states 0 and 1 are generated with equal probabilities of ½. This way, synthesis of 

probabilistic logic and finite state machines in quantum is as complicated as for 
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combinational circuits, which is different from standard circuits. Moreover, machines 

with entangled states [1] can also be synthesized. 

The classical state of 0 corresponds to the case where α=1 and β=0. Similarly, the 

classical state of 1 corresponds to α=0 and β=1. The effect of quantum gates on a qubit 

can be described as vector operations on α and β, where the quantum gates are 

represented by unitary matrices. A unitary matrix is a n×n complex matrix U with the 

following property:U×U+ = U+×U = I, where I is the identity matrix and U+ is the 

conjugate transpose (also known as the Hermitian adjoint) of U. 
 

V+

V

A

B IF (A) THEN  V(B)

A

ELSE  B

A

B IF (A) THEN  V (B)

A

ELSE  B

+

AA

B A XOR B

A NOT A

(b)

(a) (c)

(d)

 
 

Figure 1: Elementary Quantum Gates 
 

It has been shown that any quantum logic circuit can be constructed using elementary 

quantum XOR (Feynman gate), and one-qubit gates. It has also been shown [1,15] that 

arbitrary permutative quantum circuit can be synthesized using only two-qubit gates: 

controlled-V, controlled-V+, Feynman gates and single-qubit NOT gates, as shown in 

Fig. 1. Thus, an entire circuit can be build from 2-qubit gates of finer granularity than 

Toffoli gates used in the previous research [3,5,6,16,17]. The NOT gates are also known 

as inverters. The quantum XOR gates are also called Feynman or controlled-NOT 

(CNOT) gates. The controlled-V gate has two bits: control and data. The data output is 

the same as the data input (B) when the control input (A) value is 0 (FALSE).  If the 

control value is 1 (TRUE), the data output becomes V(input). Similar rules apply to the 

controlled-V+ gate, except that its data output becomes V+(input), where V+ is the 

Hermitian of V. 
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According to [1,15], the values of V and V+ are constructed such that they are the square 

root of NOT (i.e. inverter) gate. Hence, if the signal V(input) is passed through another 

controlled-V gate with its control value also equal to 1 (TRUE), the output of the second 

gate becomes the NOT of the input. 

V×V = V+×V+ = NOT,  V+×V = V×V+ = I. 

The XOR, controlled-V and controlled- V+ gates are 2×2 gates, also called 2-qubit 

gates. Similarly, the NOT gate is a 1-qubit gate. For quantum implementation the cost of 

2-qubit gates far exceeds the cost of 1-qubit gates. Hence, in a first approximation the 

quantum cost of 1-qubit gates is usually ignored in the presence of 2-qubit 

implementations [8]. In this paper, for simplification, we consider each of the 2-qubit 

gates (XOR, controlled-V, controlled-V+) to have a quantum cost of 1. All our methods 

can be however easily modified to take into account the precise NMR [1] costs from [4]. 

Given a reversible circuit, the quantum logic circuit synthesis problem is to 

synthesize the circuit using the above elementary quantum logic gates with the minimum 

cost. Various heuristic methods have been applied to find low cost quantum 

implementations (using the elementary gates) for the functionality of the Fredkin, Toffoli, 

and Peres gates [1,3,5,6,8,11,16,17]. We solve the quantum logic circuit synthesis 

problem using group theoretical permutation representation and related algebraic 

approaches [6–14,16]. 

We are interested in synthesizing quantum circuit with pure binary inputs and 

(sometimes) outputs (1 and 0). The values of the signals in each “quantum wire” are 

modified after passing through the elementary gates. There are six possible output values 

when we apply binary (1 and 0) inputs to one of those elementary gates: 0, 1, V0, V1, V+
0, 

V+
1, where V0 represents V(input) when input is 0, and similarly for V1, V+

0, V+
1. 
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These six possible values are used as input values to gates in subsequent stages. We 

want to synthesize our circuit such that the inputs of XOR and NOT gates and the 

“control” input of the controlled-V and controlled-V+ will always be pure binary (0’s and 

1’s), i.e., their input values cannot be V0 etc. Thus we assume that every wire in a circuit 

has either pure or mixed values. This separates the quantum wires to two groups: pure 

and mixed, which is used in our group representation as explained below. Given the 

above six possible values at the data input of the controlled-V or controlled-V+, their 

corresponding data output has the same set of six possible values. Hence the input/output 

of every quantum gate in the circuit can be represented using the above six values. If we 

look at the complex matrix representation of V0, V1, V+
0, V+

1 , we can deduce that 

V0=V+
1, and V1=V+

0. Thus, it suffices to represent signals in the circuit using four values: 

0, 1, V0, V1. In this way, the problem of quantum circuit synthesis (that would normally 

use unitary matrices and Hilbert space to represent signals) is reduced to a simpler 

synthesis problem in mixed binary/quarternary algebra. (It is so in this particular case, but 

the method is more general than that and may use any kind of MV algebra). 

 

3. Formulation 

 
In this section, we will translate the problem realizing a reversible circuit with 

quantum gates into group theory. First we introduce some basic concepts of permutation 

group [11-14]. Let M = {1, 2,…, n}. A bijection (one-to-one mapping) of M onto itself is 

called a permutation on M.  We write a permutation as a product of disjoint cycles [11-

14]. The identity mapping ( ) is called the unity element in a permutation group. As 

convention, a product a*b of two permutations a and b means applying mapping a before 

b. Inverse of a: if b*a=a*b=( ), then b is called an inverse of a, denoted as a-1. The image 

of s∈M under a is denoted as a(s). The image of a subset S⊆M is a(S)={a(s)|s∈S}. 
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   Consider the truth table of a controlled-V gate on two qubits, as shown in Table 1. 

We use A and B to denote the control and data inputs, and use P and Q to denote the 

control and data output respectively.  

Table 1: Truth table of Ctrl-V gate 

Input Output 
Label  A B P Q Label 

1 0 0 0 0 1 
2 0 1 0 1 2 
3 1 0 1 V0 7 
4 1 1 1 V1 8 
5 0 V0 0 V0 5 
6 0 V1 0 V1 6 
7 1 V0 1 1 4 
8 1 V1 1 0 3 
9 V0 0 V0 0 9 
10 V0 1 V0 1 10 
11 V1 0 V1 0 11 
12 V1 1 V1 1 12 
13 V0 V0 V0 V0 13 
14 V0 V1 V0 V1 14 
15 V1 V0 V1 V0 15 
16 V1 V1 V1 V1 16 

 

The table is enumerated such that pure binary inputs patterns appear at the top of the 

truth table. The output patterns are computed according to Section 2. The cases where the 

control input value is non-binary (V0 or V1) do not exist. We can thus treat them as don’t 

care cases, because we want to constrain our synthesis such that control inputs are pure 

binary (as described in Section 2). We specify the output patterns of these don’t care 

cases to be the same as their input patterns. We label the input patterns using natural 

numbers. The output patterns form a permutation of the input patterns; and the output 

label reflects that permutation. We can then represent the entire truth table of this gate 

using the permutation representation: (3, 7, 4, 8). The permutation representations of 

other orientations (e.g. upside down position) of this gate or other gates or for more 
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qubits can be derived in a similar fashion. Observe that this way any restricted synthesis 

problem in quantum circuits can be reduced to a problem in some multiple-valued logic. 

Our approach is thus only an illustration of a category of synthesis problems that reduce 

representation from unitary (complex) matrices to multiple-valued algebra which allows 

us to use finite group theory methods and software [14]. The disadvantage of our 

approach is however that the sizes of these groups grow very quickly. 

 

 
   ( a ) VBA                                        ( b ) V+

AB                                      ( c ) FCA

Figure 2: Arrangements of 3 qubit gates 

 

Consider 3 qubit quantum gates, with inputs A, B, C and outputs P, Q, R, 

respectively. We define gates for controlled-V, controlled-V+ and XOR based on their 

qubit alignments. For example, we denote VBA as the gate shown in Figure 2(a), where 

the second subscript letter A is the control bit, and the first subscript letter B is the bit 

which will change (a.k.a. data bit), i.e., P = A; Q = V(B) if A = 1, else Q = B; R = C. 

Overall, there are six 3-qubit controlled-V gates: VBA, VAB, VCA, VAC, VCB, VBC. 

Similarly, we denote V+
AB as the gate shown in Figure 2(b). Again, we have six 3-qubit 

controlled-V+ gates: V+
AB, V+

BA, V+
CA, V+

AC, V+
CB, V+

BC. We denote FCA as the Feynman 

gate shown in Figure 3(c), where the first subscript letter C will be changed according to 

the second subscript letter A, i.e., P = A; Q = B; R = C⊕A. There are six 3 qubit 

Feynman gates: FCA, FAC, FAB, FBA, FCB, FBC. 

In order to use Group Theory, we need to encode the input values. As shown in 

Section 2, there are four possible values for each qubit: 0, 1, V0, and V1. Then we have: 

V0 = V+
1, V1 = V+

0, V(V1) = V+(V0) = 0, and V(V0) = V+(V1) = 1. Every 3 qubit circuit 

has 43 = 64 possible input patterns. So we can create a 64 entry truth table for 3 qubit gate 

similar to the 16 entry truth table for 2 qubit gate in Table 1. But for reversible circuits, 

A

B

C

P

Q

R

A P

B

C

Q
V

R

A

B

C

P
V+

Q

R

 7



we only care about binary input and binary output for each qubit. Considering the 

property of our elementary quantum gates, every pattern must contain a 1. Otherwise, this 

pattern will not change after any quantum gate. So we only need to consider 64-27+1 = 

38 patterns (including a zero pattern) in our truth table. We can effectively place the 

remaining 26 (unchangeable) patterns at the bottom of the truth table. So their labels will 

not permute, and will not show up in our permutation representations. Hence the domain 

of the permutation representation is reduced from 64 to 38. We arrange these permutable 

patterns such that the 8 binary patterns will appear first (from small to big), then the other 

30 patterns (containing V0 or V1) also appear from small to big. Again, in order to make 

the output patterns a permutation of input patterns, we define that when the control bit is 

equal to V0 or V1, the data bit will keep its value unchanged. The following formulae 

demonstrate the permutations of the quantum gates. 

VBA = (5,17,7,21)(6,18,8,22)(13,19,15,23)(14,20,16,24), 

V+
AB = (3,33,7,26)(4,34,8,27)(9,35,15,28)(10,36,16,29), 

FeCA = (5,6)(7,8)(17,18)(21,22). 

Let S = {1,2,3,4,5,6,7,8} be the set of the index of the binary input patterns that we 

consider. In the product of multiplying a permutation, we give a banned set for this 

permutation such that using the corresponding quantum gate is reasonable. A banned set 

NA is the set of indices in which the value of the qubit A is V0 or V1, i.e.,   

NA={25,26,27,28,29,30,31,32,33,34,35,36,37,38}. Given a quantum circuit f (a cascading 

circuit of some quantum gates), we need to know which quantum gate can be cascaded 

after f. To do this, we let the image of a set of input patterns S in f  be f(S), i.e. f(S) is the 

set of output patterns from f that corresponds to the set of input patterns. If the 

intersection f(S)∩NA of f(S) and NA is an empty set ∅, then LA={VBA, VCA, V+
BA, V+

CA} 

can be cascaded after f. The reason is that for any k in NA, the bit A in the kth  pattern has 

value V0 or V1, which can not be used as control signal for the next control quantum gate. 

Similarly, we have other banned sets:  

NB = {11,12,17,18,19,20,21,22,23,24,30,31,37,38}, used for LB = {VAB, VCB, V+
AB, 

V+
CB},  

NC = {9,10,13,14,15,16,19,20,23,24,28,29,35,36}, used for LC = {VAC, VBC, V+
AC, 

V+
BC}. 
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The same concept applies to Feynman gates. We define NAB is the set of index in 

which the value of the qubit A or B is V0 or V1, i.e., 

NAB={11,12,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38} used 

for LAB={ FAB, FBA}. If f(S) ∩ NAB = ∅ (empty set), then FAB and FBA can be cascaded 

after f. 

Similarly, we have: 

NAC={9,10,13,14,15,16,19,20,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38} used for 

LAC={ FAC, FCA}; 

NBC={9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,28,29,30,31,35,36,37,38} used for 

LBC={ FBC, FCB}. 

 

Definition 1. The Reasonable Product g1•g2  of two permutations g1 and g2 on 

{1,2,…,38}, where g2 belongs to the quantum library L (the union of LA, LB, LC, LAB, 

LAB, LBC), is defined as normal permutation product g1*g2 if only if at least one of  the 

following six cases can happen: 

i): if g2 ∈ LA, then g1(S) ∩ NA=∅; 

ii): if g2 ∈ LB, then g1(S) ∩ NB=∅; 

iii): if g2 ∈ LC, then g1(S) ∩ NC=∅; 

iv): if g2 ∈ LAB, then g1(S) ∩ NAB=∅; 

v): if g2 ∈ LAB, then g1(S) ∩ NAC=∅; 

vi): if g2 ∈ LBC, then g1(S) ∩ NBC=∅. 

We also define the reasonable product of a permutation g and a library L: 

g • L = {g • g’ | g’ ∈ L} 

 

The meaning of reasonable product of g1•g2 is that: if g2 is a control gate, then the 

value of the control bit is either 0 or 1, (i.e., cannot be V0 or V1), so the cascading g2 after 

g1 is reasonable (i.e., satisfies our constraint for multi-valued logic); if g2 is a XOR gate, 

then the values of the two bits in the XOR function are either 0 or 1, thus the cascading g2 

after g1 is reasonable. On the other hand, if g2 can be cascaded after g1, then the product 
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g1*g2 is a reasonable product g1•g2. Therefore, g•L includes all cases cascading a 

quantum gate after g. 

We now present an algorithm to compute the reversible circuit set G[k] of all 

reversible circuits which have cost k. The constant cb is the upper-bound cost that we can 

apply in a particular computer (due to finite memory size). In our computer, cb=7. In our 

algorithm, we use a useful function Restrictedperm(b,S) in GAP [14] (a group theory 

computation package), where b is a permutation on a set M, and S is a subset of M. The 

function is defined as: If the image b(S)=S, then Restrictedperm(b,S) is a permutation b’ 

on S such that for all s in S, the image b’(s)=b(s). Otherwise, the function will return 

FALSE. The set S can be configured to constrain our synthesis result to circuit that 

produce binary outputs for binary inputs, or quaternary outputs (complex valued) for 

binary inputs, or even for quaternary input. The idea of our algorithm is to create a set 

A[k] of all quantum circuits that can be constructed using k or less quantum gates. B[k] is 

the set of quantum circuits that can be constructed using k (and at least k) quantum gates. 

We create pre_G[k]={b’| b’=Restrictedperm(b,S), b∈Β[k]}, where b(S)=S means if the 

input pattern is pure binary, then its output is also a pure binary pattern. So the circuit b’ 

is a reversible circuit with cost equal to or less than k. At the end of the loop, we create 

the set G[k] by subtracting G[k-1], …, G[1] from pre_G[k] because when we compute 

the b’=Restrictedperm(b, S) circuit, b’ may potentially be a member of any G[j], j<k. 

 

Finding_Minimum_Cost_Circuits Algorithm (FMCF):  

Input: 

NA, NB, NC, NAB, NAC, NBC;  

LA:={VBA, VCA, V+
BA, V+

CA}; LB:={VAB, VCB, V+
AB, V+

CB}; LC:={VAC, VBC, V+
AC, 

V+
BC}; LAB:={FAB, FBA}; LAC:={FCA, FAC}; LBC:={FCB, FBC}.  

Output: G[1], G[2], …, G[cb]. 

A[0]:= {( )}; 

B[0]:= {( )}; 

For 1≤ k≤ cb, do 

       A[k]:=A[k-1]; 

       For all b in B[k-1], do 
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                      Add b•L in A[k]; 

       End for; 

       B[k]:= A[k]-A[k-1]; 

       For all b in B[k], do 

               Compute b(S); 

               If b(S) = S, then 

                      b’:= Restrictedperm(b,S); 

                      Add b’ in pre_G[k]; 

               End if; 

       End for; 

       G[k]:= pre_G[k]-G[k-1]-G[k-2]-…-G[1]; 

End for; 

 

Theorem 1. G[k] is the set of all reversible circuits that fulfill our input/output 

constraints and have quantum cost of at least k without using NOT gate. 

Proof:  

i): Consider any reversible circuit g (that satisfies our input/output constraints) which has 

minimal quantum cost k without NOT gate, there are k control gates or Feynman gates a1, 

a2, …, ak such that g=a1*a2*…*ak. From the algorithm, the general permutation Gen(g) of 

g is in A[k]. So  

g = Restrictedperm(Gen(g),S), and g is in pre_G[k]. If g is not in G[k], then there is r<k 

such that g is in G[r], therefore there are r quantum gates b1, b2, …, br such that 

g=b1*b2*…*br. This contradicts with the minimal quantum cost k. Thus g is in G[k]. 

ii): On the other hand, for any g in G[k], g has minimal quantum cost k. The reason is: 

According to the algorithm, there exists b in A[k] such that g = Restrictedperm(b,S). So, 

there are k quantum gates a1, a2, …, ak such that g=a1*a2*…*ak. So g has a realization 

with quantum cost k. If the cost k is not minimal, then there exists a number r<k such that 

g∈G[r], which contradicts with g being in G[k]:= pre_G[k]-G[k-1]-G[k-2]-…-G[1].      ■ 

 

For arbitrary n-qubit reversible circuits, we use N to denote the group realized by 

NOT gate. The size of N is 2n, for all a∈N, a*a=( ), and for all a,b∈N, a*b=( ) iff a=b. 
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Let G be the set of all n-qubit reversible circuits realized by control gate and 

Feynman gate. Let H be the set of all n-qubit reversible circuits realized by control gate, 

Feynman gate and NOT gate. We can deduce that H can be evenly decomposed to 2n 

leftcosets of G without intersection, shown in the following theorem. 

 

Theorem 2: H= ∪a∈N a*G, and ∀a,b∈N (a≠b) ⇒ (a*G)∩(b*G)=∅. 

Proof: We encode the input patterns from [0,0,…,0] to [1,1,…,1] as the integers from 1 

to 2n. For any g∈G, we have g(1)=1. For any a∈N, if a≠( ), then a(1) ≠1. For any h∈H, 

there exists a∈N such that (a*h)(1)=1. So a*h∈G. Therefore, H= ∪a∈N a*G. 

Given any a,b∈N, a≠b such that (a*G)∩(b*G)≠∅, then ∃g1,g2∈G such that a*g1=b*g2. 

Since a*a=( ), so a*b=g1*(g2)-1. We are given a≠b, so a*b≠( ), thus (a*b)(1) ≠1.But 

(g1*(g2)-1)(1)=1. This contradiction shows that the assumption there are a, b∈N, a≠b such 

that (a*G)∩(b*G)≠∅ is wrong. Thus for any a, b∈N, a≠b, (a*G)∩(b*G)=∅.    ■ 

 

Specifically, when n=3, H is the symmetry group S8. 

G = Groupgeneratedby{FAB, FBA, FBC, FCB, PeAB} 

|G| = 5040, 

|S8| = 40320. 

Based on the Finding Algorithm and Theorem 2, we formulate the Expressing 

Algorithm: 

 

Minimum_Cost_Expressing Algorithm (MCE): 

Input: 

Reversible circuit g; 

Reversible gates NA, NB, NC, NAB, NAC, NBC;  

LA:={VBA, VCA, V+
BA, V+

CA}; LB:={VAB, VCB, V+
AB, V+

CB}; LC:={VAC, VBC, V+
AC, 

V+
BC}; LAB:={FAB, FBA}; LAC:={FCA, FAC}; LBC:={FCB, FBC}.  

Output: flag, t, d[0], d[1], …, d[t]; 

flag:= 0; t:= 0; 

If g in {( )}∪NOT then 

    flag:= 1; 
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    t:= 0;  d[0]:= g; 

End if 

If flag = 0 then  

     Find d[0] in {( )} ∪ NOT such that  ((d[0])-1*g)(1) = 1; 

       g:= (d[0])-1*g;  

     For 1≤ k≤ cb, do        

           Compute B[k], G[k] as Finding Algorithm 

           If g in G[k] then 

               flag:= 1; t:= k; 

               For all b in B[k] do 

                        If g = Restrictedperm(b,S) then stop for; 

               End for 

           End if 

      End for 

      For j from t to 1 do 

             Find d[j] in L such that 

                b:=b*(d[j])-1 in B[j-1] and b*d[j] is reasonable. 

       End for  

End if 

 

Theorem 3: If the quantum cost of g does not exceed the bound cb, then the Expresssing 

Algorithm will return d[0], d[1], …, d[t] such that g = d[0]*d[1]*…*d[t] and t is 

minimum. 

Proof: Assume g has minimum cost t ≤ cb.  If g(1)≠1, then there exists a NOT gate 

implementation d[0]∈N such that a=(d[0])-1*g, and a(1)=1. Otherwise g(1)=1, choose 

d[0]=( ). Based on Theorem 2, a∈G. So, a has the same minimum cost t as g. 

If the minimum cost s of a is no more than cb, then a will be in G[s], flag=1. According 

to the algorithm MCE, there exists t ≤ cb such that a∈G[t]. According the algorithm 

FMCF, there are quantum gates d[1], …, d[t] such that a= d[1]*…*d[t], i.e., g = 

d[0]*d[1]*…*d[t]. If a has lower cost s<t, then there are c[1], …, c[s] such that a= 

c[1]*…*c[s]. Then a∈pre_G[s], which implies a∉G[t], which is a contradiction. Thus, t 

 13



is the minimum cost of a or g. If flag=0, then a cannot be in G[1], …, G[cb]. The cost of a 

must be bigger than cb.   ■ 

 

4. Synthesis of Quantum Automata  
 

Recently quantum random number generators have been introduced to the market as 

one of first two practical applications of quantum computing [19]. Although these circuits 

are simple, they are the first example of a new technology to come and for which no 

formal synthesis methods exist.  

 

Measurement
Quantum

input output

Quantum
Circuit

 
 

Figure 3: Quantum realized Probabilistic State Machine 

 

Our synthesis approach presented above is also applicable in the construction of 

quantum-realized probabilistic state machines (quantum automata, etc. [18]) and 

controlled quantum random number generators [19]. Given a specification, we create a 

truth table with binary inputs and quaternary outputs. We can apply our approach to 

synthesize quantum circuit for this specification. With quantum-measurement units this 

circuit behaves externally as a probabilistic combinational circuit. It has deterministic 

inputs and probabilistic outputs (which are functions of inputs generated by the quantum 

gates). So, without any modifications, our approach generates quantum circuits with 
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probabilistic combinational functionality. This logic (quantum plus measurements) can be 

used as a combinational component of a quantum automaton, just standard memory 

elements and loop are added – see Figure 3. This automaton is observed externally as a 

machine with probabilistic and entangled behaviors. The outputs and next states are 

probabilistically generated binary vectors. This approach will enable us to synthesize 

minimal quantum automata, Hidden Markov Models and similar concepts, thus extending 

the application of quantum circuits beyond commercial quantum random number 

generators. 

 
5. Experiments 
 

We applied our minimum cost algorithm to 3 qubit synthesis, the results are shown in 

the following table. 

Table 2: Number of circuits with cost k 

Cost k 0 1 2 3 4 5 6 7 

|G[k]| 1 6 30 52 84 156 398 540 

|S8[k]| 8 48 240 416 672 1248 3184 4320 

 

For cost up to 3: G[1], G[2] and G[3] consists of the set of the binary input binary 

output circuits which are the combinations of 1, 2, 3 Feynman gates respectively. 

In G[4], there are 60 circuits realized by 4 Feynman gates, the other 24 circuits 

realized by 3 control gates and 1 Feynman gate. And these 24 circuits exhibit the property 

of universal gates: all 3-bit binary input and binary output reversible circuits can be 

realized by NOT gates, Feynman gates and any one of these 24 circuits. To show this, we 

use g to denote any one of these 24 gates, M=group generated by g, NOT gate and these 

six Feynman gates. Using GAP, we have the size of M is Size(M)=40320=Size(S8). And 

M is a subset of S8. Therefore M=S8, namely, S8 can be realized by g, NOT gate and 

Feynman gate. There are four representative circuits from these 24 circuits. Each of these 

four circuits has other five similar circuits with different permutations of the three bits. 
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Figure 4: Peres circuit (g1)                               Figure 5: Quantum circuit of g2

 

g1 = (5,7,6,8) = VCB*FBA*VCA*V+
CB (Figure 4), P = A, Q = Β⊕Α, R = C⊕AB; The gate 

g1 is a Peres gate. 

g2 = (5,8,7,6) = V+
BC*FCA*VBA*VBC (Figure 5),   P = A, Q = B⊕AC’, R = C⊕A; 
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Figure 6: Quantum circuit of g3                     Figure 7: Quantum circuit of g4

 

g3 = (3,4)(5,7)(6,8) = VCB*FBA*V+
CA*VCB (Figure 6),  P = A, Q = B⊕A, R = C⊕A’B; 

g4 = (3,4)(5,8)(6,7) = VCB*FBA*VCA*VCB (Figure 7),   P = A, Q = B⊕A, R = C’⊕A’B’. 

 

Our algorithm can be used to synthesize a quantum circuit from a specified circuit. 

We applied our algorithm to synthesize the well known Peres and Toffoli circuits. It took 

9 CPU seconds (on a 850MHz Pentium® III) to synthesize the Peres circuit (cost=4) and 

98 seconds for the Toffoli circuit (cost=5). 

V+V+ V
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C

P

R

B Q

 
Figure 8: Hermitian adjoint implementation of Peres 
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Our synthesis algorithm found two implementations for Peres, one of them is the 

same as shown in Figure 4. The other one is the hermitian adjoint implementation, which 

is swapping all control-V and control-V+ gates, shown in Figure 8. 

 

         
  ( a )  To=FBA*V+

CB*FBA*VCA*VCB               ( b )  To=FBA*VCB*FBA*V+
CA*V+

CB
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  ( c )  To= FAB*V+

CA*FAB*VCA*VCB              ( d ) To=FAB*VCA*FAB*V+
CA*V+

CB

Figure 9: Quantum implementations of Toffoli 

 

For the Toffoli circuit, we found four quantum implementations, shown in Figure 9. 

Notice that circuits (a) and (b) (in Figure 9) are Hermitian adjoints of each other by 

simply exchanging V and V+ gates; and circuits (c) and (d) are also Hermitian adjoints of 

each other. The difference between these two pairs lies in the qubit where they perform 

XOR (Feynman) operations. Since Toffoli has two outputs (P and Q) that are both not 

changing (same as their inputs), we have two choices to perform the XOR operations: 

qubit A (circuits (a) and (b)) or qubit B (circuits (c) and (d)). Notice that for runtime 

performance our algorithm does not intend to find all possible implementations of the 

specified circuit. It only finds some implementations as the synthesis result. 

 

6. Conclusion 
 In this paper we formulated a method to exactly minimize a subset of quantum 

circuits by reducing the problem to multiple-valued logic and group theory. As far as we 

know, this is the first time that such a combined approach has been proposed. Using this 

method we found many new gates and inexpensive realizations of permutative quantum 
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circuits. For instance, we found a family of Peres-like gates which have all the same 

lowest cost and can be used to synthesize permutative quantum circuits (section 5). Not 

only is the Peres gate the cheapest of all NMR realized permutative gates, but we show 

that there is a large family of such gates with the same smallest possible cost, for which 

nobody has developed a synthesis method yet. We also demonstrated (in another paper 

submitted to this conference) that the number of gates using libraries with Peres gates is 

smaller than using other libraries for all 3-qubit circuits. Taken together, these are strong 

arguments for Peres-like gates realized using quantum basic gates from this paper. 

Our method can also be used to synthesize circuits with pure inputs and mixed outputs. 

Because the mixed outputs correspond in “quantum measurements” to randomly 

generated vectors with known probabilities [1], our method is then without any 

modification a new approach to synthesize a class of binary-input circuits that have 

random but controlled binary outputs (we remove the constraint that outputs are pure 

states). In particular, this class includes probabilistic finite state machines and hidden 

Markov Models [18].  

Our future research is on finding efficient heuristics that would allow us to synthesize 

probabilistic and entangled state machines from examples of their behaviors expressed in 

multiple-valued logics corresponding to sets of possible complex numbers (each possible 

complex number encoded by one value of the logic). Such examples correspond to 

probabilistic input-output behaviors of the machine. 
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