133 research outputs found

    Primary Blast Traumatic Brain Injury in the Rat: Relating Diffusion Tensor Imaging and Behavior

    Get PDF
    The incidence of traumatic brain injury (TBI) among military personnel is at its highest point in U.S. history. Experimental animal models of blast have provided a wealth of insight into blast injury. The mechanisms of neurotrauma caused by blast, however, are still under debate. Specifically, it is unclear whether the blast shockwave in the absence of head motion is sufficient to induce brain trauma. In this study, the consequences of blast injury were investigated in a rat model of primary blast TBI. Animals were exposed to blast shockwaves with peak reflected overpressures of either 100 or 450 kPa (39 and 110 kPa incident pressure, respectively) and subsequently underwent a battery of behavioral tests. Diffusion tensor imaging (DTI), a promising method to detect blast injury in humans, was performed on fixed brains to detect and visualize the spatial dependence of blast injury. Blast TBI caused significant deficits in memory function as evidenced by the Morris Water Maze, but limited emotional deficits as evidenced by the Open Field Test and Elevated Plus Maze. Fractional anisotropy, a metric derived from DTI, revealed significant brain abnormalities in blast-exposed animals. A significant relationship between memory deficits and brain microstructure was evident in the hippocampus, consistent with its role in memory function. The results provide fundamental insight into the neurological consequences of blast TBI, including the evolution of injury during the sub-acute phase and the spatially dependent pattern of injury. The relationship between memory dysfunction and microstructural brain abnormalities may provide insight into the persistent cognitive difficulties experienced by soldiers exposed to blast neurotrauma and may be important to guide therapeutic and rehabilitative efforts

    Preinjury somatization symptoms contribute to clinical recovery after sport-related concussion

    Get PDF
    OBJECTIVE: To determine the degree to which preinjury and acute postinjury psychosocial and injury-related variables predict symptom duration following sport-related concussion. METHODS: A total of 2,055 high school and collegiate athletes completed preseason evaluations. Concussed athletes (n = 127) repeated assessments serially (<24 hours and days 8, 15, and 45) postinjury. Cox proportional hazard modeling was used to predict concussive symptom duration (in days). Predictors considered included demographic and history variables; baseline psychological, neurocognitive, and balance functioning; acute injury characteristics; and postinjury clinical measures. RESULTS: Preinjury somatic symptom score (Brief Symptom Inventory-18 somatization scale) was the strongest premorbid predictor of symptom duration. Acute (24-hour) postconcussive symptom burden (Sport Concussion Assessment Tool-3 symptom severity) was the best injury-related predictor of recovery. These 2 predictors were moderately correlated (r = 0.51). Path analyses indicated that the relationship between preinjury somatization symptoms and symptom recovery was mediated by postinjury concussive symptoms. CONCLUSIONS: Preinjury somatization symptoms contribute to reported postconcussive symptom recovery via their influence on acute postconcussive symptoms. The findings highlight the relevance of premorbid psychological factors in postconcussive recovery, even in a healthy athlete sample relatively free of psychopathology or medical comorbidities. Future research should elucidate the neurobiopsychosocial mechanisms that explain the role of this individual difference variable in outcome following concussive injury

    Age Differences in Recovery After Sport-Related Concussion: A Comparison of High School and Collegiate Athletes

    Get PDF
    Younger age has been hypothesized to be a risk factor for prolonged recovery after sport-related concussion, yet few studies have directly evaluated age differences in acute recovery

    Prospective, Head-to-Head Study of Three Computerized Neurocognitive Assessment Tools (CNTs): Reliability and Validity for the Assessment of Sport-Related Concussion

    Get PDF
    Abstract Limited data exist comparing the performance of computerized neurocognitive tests (CNTs) for assessing sport-related concussion. We evaluated the reliability and validity of three CNTs—ANAM, Axon Sports/Cogstate Sport, and ImPACT—in a common sample. High school and collegiate athletes completed two CNTs each at baseline. Concussed ( n =165) and matched non-injured control ( n =166) subjects repeated testing within 24 hr and at 8, 15, and 45 days post-injury. Roughly a quarter of each CNT’s indices had stability coefficients ( M =198 day interval) over .70. Group differences in performance were mostly moderate to large at 24 hr and small by day 8. The sensitivity of reliable change indices (RCIs) was best at 24 hr (67.8%, 60.3%, and 47.6% with one or more significant RCIs for ImPACT, Axon, and ANAM, respectively) but diminished to near the false positive rates thereafter. Across time, the CNTs’ sensitivities were highest in those athletes who became asymptomatic within 1 day before neurocognitive testing but was similar to the tests’ false positive rates when including athletes who became asymptomatic several days earlier. Test–retest reliability was similar among these three CNTs and below optimal standards for clinical use on many subtests. Analyses of group effect sizes, discrimination, and sensitivity and specificity suggested that the CNTs may add incrementally (beyond symptom scores) to the identification of clinical impairment within 24 hr of injury or within a short time period after symptom resolution but do not add significant value over symptom assessment later. The rapid clinical recovery course from concussion and modest stability probably jointly contribute to limited signal detection capabilities of neurocognitive tests outside a brief post-injury window. ( JINS , 2016, 22 , 24–37

    The Angular-Diameter-Distance-Maximum and Its Redshift as Constraints on Λ≠0\Lambda \neq 0 FLRW Models

    Full text link
    The plethora of recent cosmologically relevant data has indicated that our universe is very well fit by a standard Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) model, with ΩM≈0.27\Omega_{M} \approx 0.27 and ΩΛ≈0.73\Omega_{\Lambda} \approx 0.73 -- or, more generally, by nearly flat FLRW models with parameters close to these values. Additional independent cosmological information, particularly the maximum of the angular-diameter (observer-area) distance and the redshift at which it occurs, would improve and confirm these results, once sufficient precise Supernovae Ia data in the range 1.5<z<1.81.5 < z < 1.8 become available. We obtain characteristic FLRW closed functional forms for C=C(z)C = C(z) and M^0=M^0(z)\hat{M}_0 = \hat{M}_0(z), the angular-diameter distance and the density per source counted, respectively, when Λ≠0\Lambda \neq 0, analogous to those we have for Λ=0\Lambda = 0. More importantly, we verify that for flat FLRW models zmaxz_{max} -- as is already known but rarely recognized -- the redshift of CmaxC_{max}, the maximum of the angular-diameter-distance, uniquely gives ΩΛ\Omega_{\Lambda}, the amount of vacuum energy in the universe, independently of H0H_0, the Hubble parameter. For non-flat models determination of both zmaxz_{max} and CmaxC_{max} gives both ΩΛ\Omega_{\Lambda} and ΩM\Omega_M, the amount of matter in the universe, as long as we know H0H_0 independently. Finally, determination of CmaxC_{max} automatically gives a very simple observational criterion for whether or not the universe is flat -- presuming that it is FLRW.Comment: 17 Pages, 1 Figur

    Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: a systematic review

    Get PDF
    OBJECTIVE: Determine the role of fluid-based biomarkers, advanced neuroimaging, genetic testing and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion (SRC). DESIGN: Systematic review. DATA SOURCES: Searches of seven databases from 1 January 2001 through 24 March 2022 using keywords and index terms relevant to concussion, sports and neurobiological recovery. Separate reviews were conducted for studies involving neuroimaging, fluid biomarkers, genetic testing and emerging technologies. A standardised method and data extraction tool was used to document the study design, population, methodology and results. Reviewers also rated the risk of bias and quality of each study. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Studies were included if they: (1) were published in English; (2) represented original research; (3) involved human research; (4) pertained only to SRC; (5) included data involving neuroimaging (including electrophysiological testing), fluid biomarkers or genetic testing or other advanced technologies used to assess neurobiological recovery after SRC; (6) had a minimum of one data collection point within 6 months post-SRC; and (7) contained a minimum sample size of 10 participants. RESULTS: A total of 205 studies met inclusion criteria, including 81 neuroimaging, 50 fluid biomarkers, 5 genetic testing, 73 advanced technologies studies (4 studies overlapped two separate domains). Numerous studies have demonstrated the ability of neuroimaging and fluid-based biomarkers to detect the acute effects of concussion and to track neurobiological recovery after injury. Recent studies have also reported on the diagnostic and prognostic performance of emerging technologies in the assessment of SRC. In sum, the available evidence reinforces the theory that physiological recovery may persist beyond clinical recovery after SRC. The potential role of genetic testing remains unclear based on limited research. CONCLUSIONS: Advanced neuroimaging, fluid-based biomarkers, genetic testing and emerging technologies are valuable research tools for the study of SRC, but there is not sufficient evidence to recommend their use in clinical practice. PROSPERO REGISTRATION NUMBER: CRD42020164558

    Stability in Cosmology, from Einstein to Inflation

    Get PDF
    I investigate the role of stability in cosmology through two episodes from the recent history of cosmology: (1) Einstein’s static universe and Eddington’s demonstration of its instability, and (2) the flatness problem of the hot big bang model and its claimed solution by inflationary theory. These episodes illustrate differing reactions to instability in cosmological models, both positive ones and negative ones. To provide some context to these reactions, I also situate them in relation to perspectives on stability from dynamical systems theory and its epistemology. This reveals, for example, an insistence on stability as an extreme position in relation to the spectrum of physical systems which exhibit degrees of stability and fragility, one which has a pragmatic rationale, but not any deeper one

    Plakophilin-3 Is Required for Late Embryonic Amphibian Development, Exhibiting Roles in Ectodermal and Neural Tissues

    Get PDF
    The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types

    Returning to Activity After a Concussion

    Get PDF
    This education resource is designed to guide individuals with a concussion (or those caring for someone with a concussion) on how to safely reintroduce activity so that you can do the things you need, want, and love to do

    Consensus statement on concussion in sport—the 5 th international conference on concussion in sport held in Berlin, October 2016

    Get PDF
    The 2017 Concussion in Sport Group (CISG) consensus statement is designed to build on the principles outlined in the previous statements1–4 and to develop further conceptual understanding of sport-related concussion (SRC) using an expert consensus-based approach. This document is developed for physicians and healthcare providers who are involved in athlete care, whether at a recreational, elite or professional level. While agreement exists on the principal messages conveyed by this document, the authors acknowledge that the science of SRC is evolving and therefore individual management and return-to-play decisions remain in the realm of clinical judgement. This consensus document reflects the current state of knowledge and will need to be modified as new knowledge develops. It provides an overview of issues that may be of importance to healthcare providers involved in the management of SRC. This paper should be read in conjunction with the systematic reviews and methodology paper that accompany it. First and foremost, this document is intended to guide clinical practice; however, the authors feel that it can also help form the agenda for future research relevant to SRC by identifying knowledge gaps
    • …
    corecore