1,320 research outputs found

    Confocal microscopy

    Get PDF
    Chapter focusing on confocal microscopy. A confocal microscope is one in which the illumination is confined to a small volume in the specimen, the detection is confined to the same volume and the image is built up by scanning this volume over the specimen, either by moving the beam of light over the specimen or by displacing the specimen relative to a stationary beam. The chief advantage of this type of microscope is that it gives a greatly enhanced discrimination of depth relative to conventional microscopes. Commercial systems appeared in the 1980s and, despite their high cost, the world market for them is probably between 500 and 1000 instruments per annum, mainly because of their use in biomedical research in conjunction with fluorescent labelling methods. There are many books and review articles on this subject ( e.g. Pawley ( 2006) , Matsumoto( 2002), Wilson (1990) ). The purpose of this chapter is to provide an introduction to optical and engineering aspects that may be o f interest to biomedical users of confocal microscopy

    Standing-wave-excited multiplanar fluorescence in a laser scanning microscope reveals 3D information on red blood cells

    Get PDF
    Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report that the relative intensities in each plane of excitation depend on the Stokes shift of the fluorochrome. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ~90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria.Comment: 15 pages, 4 figures; changed the discussion of narrow-band detected fringes (Fig. 3) to describe the phenomenon as a moire pattern between the excitation and emission standing-wave fields, rather than a beats pattern; added DiI(5)-labelled red blood cell in Fig. 4 to show that standing-wave fringes are present even when the dye excitation wavelength is outside the haemoglobin absorption ban

    The Impact of Design-Based Modeling Instruction on Seventh Graders\u27 Spatial Abilities and Model-Based Argumentation

    Get PDF
    Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students\u27 spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal\u27s form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students\u27 arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed models to better assist them in scientific argumentation over paper drawing models. In fact, when given a choice, students rarely used paper drawing to assist in argument. There was also a difference in model utility between the two different model types. Participants explicitly used 3D printed models to complete gestural modeling, while participants rarely looked at 2D models when involved in gestural modeling. This study\u27s findings added to current theory dealing with the varied spatial challenges involved in different modes of expressed models. This study found that depth, symmetry and the manipulation of perspectives are typically spatial challenges students will attend to using CAD while they will typically ignore them when drawing using paper and pencil. This study also revealed a major difference in model-based argument in a design-based instruction context as opposed to model-based argument in a typical science classroom context. In the context of design-based instruction, data revealed that design process is an important part of model-based argument. Due to the importance of design process in model-based argumentation in this context, trusted methods of argument analysis, like the coding system of the IASCA, was found lacking in many respects. Limitations and recommendations for further research were also presented

    The junior high school movement in Kansas

    Get PDF
    Thesis (M.S.Ed.)--University of Kansas, Education, 1928

    Qualifications and responsibilities of Seventh-Day Adventist secondary school principals

    Get PDF
    This study grew out of a conviction that there is a need for a critical examination of the factors which combine to make a successful and efficient secondary school principal in the educational system of the Seventh-day Adventist Church. These factors should include the educational and religious background of the principal and his preparation, attitudes, and abilities to cope with administrative and disciplinary problems. They would also include the requirements of the job, both in a general sense as applied to educational administration, and specifically as applied to administration of education in Seventh-day Adventist schools. What are the major responsibilities of Seventh-day Adventist secondary school principals and how are they qualified to meet these responsibilities? The solution to this problem involved the answering of a twofold question. The immediate objectives the answering this question will be an investigation of how the ideals and objectives of Seventh-day Adventist education affect the world of the principal, the determination of what personal and educational standards must be met by Seventh-day Adventist principals, and a survey of the qualifications of principals couples with a job analysis to indicate weakness in present personnel, suggest for inservice training, and offer valuable information for the training of future personnel. The ultimate objective of course is to place such information sufficiently summarized and analyzed in the hands of educators so as to aid in the improvement of instructional and administrative training and efficiency

    The Impact of Design-Based Modeling Instruction on Seventh Graders\u27 Spatial Abilities and Model-Based Argumentation

    Get PDF
    Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students\u27 spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal\u27s form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students\u27 arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed models to better assist them in scientific argumentation over paper drawing models. In fact, when given a choice, students rarely used paper drawing to assist in argument. There was also a difference in model utility between the two different model types. Participants explicitly used 3D printed models to complete gestural modeling, while participants rarely looked at 2D models when involved in gestural modeling. This study\u27s findings added to current theory dealing with the varied spatial challenges involved in different modes of expressed models. This study found that depth, symmetry and the manipulation of perspectives are typically spatial challenges students will attend to using CAD while they will typically ignore them when drawing using paper and pencil. This study also revealed a major difference in model-based argument in a design-based instruction context as opposed to model-based argument in a typical science classroom context. In the context of design-based instruction, data revealed that design process is an important part of model-based argument. Due to the importance of design process in model-based argumentation in this context, trusted methods of argument analysis, like the coding system of the IASCA, was found lacking in many respects. Limitations and recommendations for further research were also presented

    Canadian sovereignty over the Arctic Archipelago

    Get PDF
    The central problem of the thesis is to investigate the international legal validity of the Canadian claim to the Arctic Archipelago. In order to consider the bearing on the problem of the "sector principl" the area investigated comprised the islands, waters and permanent ice lying between the the 60th and 141st meridians of west longitude extended to the North Pole, which meridians are northerly projections of Canada's easternmost and westernmost boundaries. After a brief review of the facts and law surrounding the transfer of British Arctic possessions to Canada in 1870 and 1800, the international law applicable to archipelagic formations and to the acquisition of title to terrae nullius was examined. There followed, in the perspective of international law and the historical precedents, an examination of the Canadian claims to (a) the islands of the Arctic Archipelago, and (b) the adjacent waters, especially the aftermath of the two voyages of the Manhattan and the Canadian legislation of June, 1970, extending territorial waters to a breadth of twelve miles and creating a large anti-pollution zone. It was concluded that Canada's claim to the islands was very strong, either under the "prescription" or the "consolidation" doctrines, especially in the absence of serious adverse claims, and in the light of a vigorous Canadian manifestation of animus occupandi for several decades, at least. Although the validity of the recent Canadian Maritime claims had been questioned by the United States, it was suggested either on the basis of the "consolidation" doctrine or in view of the evolving, norms of the international law of the sea that here also Canada could make out a strong case in support of the legislation of June, 1970

    Electron microscopic measurement of the size of the optical focus in laser scanning microscopy

    Get PDF
    We describe a method for measuring the lateral focal spot size of a multiphoton laser scanning microscope (LSM) with unprecedented accuracy. A specimen consisting of an aluminum film deposited on a glass coverslip was brought into focus in a LSM and the laser intensity was then increased enough to perform nanoablation of the metal film. This process leaves a permanent trace of the raster path usually taken by the beam during the acquisition of an optical image. A scanning electron microscope (SEM) was then used to determine the nanoablated line width to high accuracy, from which the lateral spot size and hence resolution of the LSM can be determined. To demonstrate our method, we performed analysis of a multiphoton LSM at various infrared wavelengths, and we report measurements of optical lateral spot size with an accuracy of 20 nm, limited only by the resolution of the SEM
    • …
    corecore