2,411 research outputs found

    Comparison of measured and calculated sound pressure levels around a large horizontal axis wind turbine generator

    Get PDF
    Results are reported from a large number of simultaneous acoustic measurements around a large horizontal axis downwind configuration wind turbine generator. In addition, comparisons are made between measurements and calculations of both the discrete frequency rotational harmonics and the broad band noise components. Sound pressure time histories and noise radiation patterns as well as narrow band and broadband noise spectra are presented for a range of operating conditions. The data are useful for purposes of environmental impact assessment

    LHC Bounds on Interactions of Dark Matter

    Full text link
    We derive limits on the interactions of dark matter with quarks from ATLAS null searches for jets + missing energy based on ~1 fb^-1 of integrated luminosity, using a model-insensitive effective theory framework. We find that the new limits from the LHC significantly extend limits previously derived from CDF data at the Tevatron. Translated into the parameter space of direct searches, these limits are particularly effective for ~GeV mass WIMPs. Our limits indicate tension with isospin violating models satisfying minimal flavor violation which attempt to reconcile the purported CoGeNT excess with Xenon-100, indicating that either a light mediator or nontrivial flavor structure for the dark sector is necessary for a viable reconciliation of CoGeNT with Xenon.Comment: 20 pages, 11 figure

    Radio Sources in Galaxy Clusters at 28.5 GHz

    Get PDF
    We present serendipitous detections of radio sources at 28.5 GHz (1 cm), which resulted from our program to image thermal Sunyaev-Zeldovich (SZ) effect in 56 galaxy clusters. We find 64 radio sources with fluxes down to 0.4 mJy, and within 250 arcseconds from the pointing centers. The spectral indices (S ~ \nu^-\alpha) of 54 sources with published low frequency flux densities range from -0.6 to 2 with a mean of 0.77, and a median of 0.84. Extending low frequency surveys of radio sources towards galaxy clusters CL 0016+16, Abell 665, and Abell 2218 to 28.5 GHz, and selecting sources with 1.4 GHz flux density greater than 7 mJy to form an unbiased sample, we find a mean spectral index of 0.71 and a median of 0.71. We find 4 to 7 times more sources predicted from a low frequency survey in areas without galaxy clusters. This excess cannot be accounted for by gravitational lensing of a background radio population by cluster potentials, indicating most of the detected sources are associated with galaxy clusters. For the cluster Abell 2218, the presence of unsubtracted radio sources with 28.5 GHz flux densities less than 0.5 mJy, can only contribute to temperature fluctuations at a level of 10 to 25 \muK. The corresponding error due to radio point source contamination in the Hubble constant derived through a combined analysis of 28.5 GHz SZ images and X-ray emission observations ranges from 1% to 6%.Comment: 18 pages, 8 figures, to appear in April 1998 issue of A

    Dirac Leptogenesis with a Non-anomalous U(1)′U(1)^{\prime} Family Symmetry

    Full text link
    We propose a model for Dirac leptogenesis based on a non-anomalous U(1)′U(1)^{\prime} gauged family symmetry. The anomaly cancellation conditions are satisfied with no new chiral fermions other than the three right-handed neutrinos, giving rise to stringent constraints among the charges. Realistic masses and mixing angles are obtained for all fermions. The model predicts neutrinos of the Dirac type with naturally suppressed masses. Dirac leptogenesis is achieved through the decay of the flavon fields. The cascade decays of the vector-like heavy fermions in the Froggatt-Nielsen mechanism play a crucial role in the separation of the primodial lepton numbers. We find that a large region of parameter space of the model gives rise to a sufficient cosmological baryon number asymmetry through Dirac leptogenesis.Comment: 8 pages, 8 figures, version to appear in JHE

    The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    Get PDF
    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line

    A CO Line and Infrared Continuum Study of the Active Star-Forming Complex W51

    Full text link
    We present the results of an extensive observational study of the active star-forming complex W51 that was observed in the J=2-1 transition of the 12CO and 13CO molecules over a 1.25 deg x 1.00 deg region with the University of Arizona Heinrich Hertz Submillimeter Telescope. We use a statistical equilibrium code to estimate physical properties of the molecular gas. We compare the molecular cloud morphology with the distribution of infrared (IR) and radio continuum sources, and find associations between molecular clouds and young stellar objects (YSOs) listed in Spitzer IR catalogs. The ratios of CO lines associated with HII regions are different from the ratios outside the active star-forming regions. We present evidence of star formation triggered by the expansion of the HII regions and by cloud-cloud collisions. We estimate that about 1% of the cloud mass is currently in YSOs.Comment: 18 pages, 29 figures; accepted for publication in ApJ
    • …
    corecore