195 research outputs found
In situ detection of tropospheric OH, HO2, NO2, and NO by laser-induced fluorescence in detection chambers at reduced pressures
This report is a brief summary of the status of work on the grant entitled 'In situ detection of tropospheric OH, HO2, NO2, and NO by laser induced fluorescence in detection chambers at low pressures'. The first version of the instrument is essentially complete and operational for about six months, and we continue to make improvements on the instrument sensitivity and reliability. We are focusing our efforts on improving our understanding of the operating characteristics of the instrument - particularly the inlet transmission for OH and HO2, the exact character of the air flow around and within the instrument, and the efficiency of the chemical conversion of HO2 to OH. We are also in the process of converting this laboratory instrument into a field worthy instrument that we can take to remote sites for measurements
Adaptation of an In Situ Ground-Based Tropospheric OH/HO2 Instrument for Aircraft Use
In-situ HO(x) (OH and HO2) measurements are an essential part of understanding the photochemistry of aircraft exhaust in the atmosphere. HO(x) affects the partitioning of nitrogen species in the NO(y) family. Its reactions are important sources and sinks for tropospheric ozone, thus providing a link between the NO(x) in aircraft exhaust and tropospheric ozone. OH mixing ratios are enhanced in aircraft wakes due to the photolysis of the HONO that is made close to the engine. Measurements of HO(x) in aircraft wakes, along with NO(x) measurements, thus provides a constraint on chemical models of the engine combustion and exhaust. The development of the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) is reported. We designed, developed, and successfully flew this instrument. It was part of the instrument complement on board the NASA DC-8 during SUCCESS, which took place in Kansas in April and May, 1996. ATHOS has a limit-of-detection for OH (S/N = 2) of 10(exp 5) OH molecules cm(exp -3) in less than 150 seconds. While this sensitivity is about 2-3 times less than the initial projections in the proposal, it is more than adequate for good measurements of OH and HO2 from the planetary boundary layer to the stratosphere. Our participation in SUCCESS was to be engineering test flights for ATHOS; however, the high-quality measurements we obtained are being used to study HO(x) photochemistry in contrails, clouds, and the clear air
In situ detection of tropospheric OH, HO2, NO2, and NO by laser-induced fluorescence in detection chambers at reduced pressures
For detection of OH and HO2, we have met or exceeded most of the goals of the proposal for this grant. We have succeeded in building a prototype instrument for the detection of OH and HO2 that has a detection sensitivity of about 2 x 10 exp 4 (OH molecules/cc)/(ct/s), about five times greater than proposed. The current minimum detectable OH of 1.4 x 10 exp 5 OH molecules/cc (S/N=2; 30 second integration) is less than half that proposed, and will be much lower once scattered light levels are reduced. The instrument displays other important properties. First, interfering signals from other gases and OH losses on the inlet appear to be small under laboratory and field conditions. Second, three different calibration methods, two external to the inlet, give similar results, to within 30 percent. Third, the chemical conversion efficiency of HO2 to OH by addition of reagent NO is better than 90 percent. All of these factors give us great confidence that this technique works. The instrument has gone through several variations that have not affected its potential performance but have affected its use. We were able to undergo the first field trials away from State College in June 1992, when we were able to participate informally in the ROSE experiment in rural Alabama, a year ahead of the proposed schedule for field studies. Because this field experiment was our first and the data analysis was complicated by instrument instabilities, we have not yet released the observations. None-the-less, we have gained insight into instrument design. We have not yet completed all of the proposed work. The calibration systems need to be improved to reduce the 50 percent to 100 percent uncertainties to less than 30 percent. Interference signals from ambient gases and possible losses on the inlet under field conditions need to be quantified. Finally, the detection of NO2 and NO with laser induced fluorescence is only now being seriously pursued
Participation as Mission Scientist for the SPADE 2 Mission
In a 1994 National Research Council report, "Atmospheric Effects of Stratospheric Aircraft: An Evaluation of NASA's Interim Assessment", the assessment panel's key issues for better determining the atmospheric effects of stratospheric aircraft, particularly on ozone, were presented
Aerodynamic design of gas and aerosol samplers for aircraft
The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed
Recommended from our members
Evaluation of simulated O-3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea
We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea
Stratospheric processes: Observations and interpretation
Explaining the observed ozone trends discussed in an earlier update and predicting future trends requires an understanding of the stratospheric processes that affect ozone. Stratospheric processes occur on both large and small spatial scales and over both long and short periods of time. Because these diverse processes interact with each other, only in rare cases can individual processes be studied by direct observation. Generally the cause and effect relationships for ozone changes were established by comparisons between observations and model simulations. Increasingly, these comparisons rely on the developing, observed relationships among trace gases and dynamical quantities to initialize and constrain the simulations. The goal of this discussion of stratospheric processes is to describe the causes for the observed ozone trends as they are currently understood. At present, we understand with considerable confidence the stratospheric processes responsible for the Antarctic ozone hole but are only beginning to understand the causes of the ozone trends at middle latitudes. Even though the causes of the ozone trends at middle latitudes were not clearly determined, it is likely that they, just as those over Antarctica, involved chlorine and bromine chemistry that was enhanced by heterogeneous processes. This discussion generally presents only an update of the observations that have occurred for stratospheric processes since the last assessment (World Meteorological Organization (WMO), 1990), and is not a complete review of all the new information about stratospheric processes. It begins with an update of the previous assessment of polar stratospheres (WMO, 1990), followed by a discussion on the possible causes for the ozone trends at middle latitudes and on the effects of bromine and of volcanoes
Recommended from our members
Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range
Abstract. Chemical models must correctly calculate the ozone formation rate, P(O3), to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3) calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3) is high. One way to test mechanisms is to compare modeled P(O3) to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS) directly measured net P(O3) in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3) was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3) was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO) levels were high and was similar to modeled P(O3) for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3) behavior. Modeled and measured P(O3) and peroxy radical (HO2 and RO2) discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3) discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3), then these results would imply that P(O3) in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3) regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone regulations. Thus, it is important to continue the development of this direct ozone measurement technique to understand P(O3), especially under high-NOx regimes
Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow
We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution, and export of NOx. The boundary layer NOx data provide top-down verification of a 50% decrease in power plant and industry NOx emissions over the eastern United States between 1999 and 2004. Observed NOx concentrations at 8–12 km altitude were 0.55 ± 0.36 ppbv, much larger than in previous U.S. aircraft campaigns (ELCHEM, SUCCESS, SONEX) though consistent with data from the NOXAR program aboard commercial aircraft. We show that regional lightning is the dominant source of this upper tropospheric NOx and increases upper tropospheric ozone by 10 ppbv. Simulating ICARTT upper tropospheric NOx observations with GEOS-Chem requires a factor of 4 increase in modeled NOx yield per flash (to 500 mol/ flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, for reasons that are unclear. A NOy-CO correlation analysis of the fraction f of North American NOx emissions vented to the free troposphere as NOy (sum of NOx and its oxidation products) shows observed f = 16 ± 10% and modeled f = 14 ± 9%, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NOy export efficiency and speciation, supporting previous model estimates of a large U.S. anthropogenic contribution to global tropospheric ozone through PAN export
- …