8 research outputs found

    Comparison of Protein Immunoprecipitation-Multiple Reaction Monitoring with ELISA for Assay of Biomarker Candidates in Plasma

    No full text
    Quantitative analysis of protein biomarkers in plasma is typically done by ELISA, but this method is limited by the availability of high-quality antibodies. An alternative approach is protein immunoprecipitation combined with multiple reaction monitoring mass spectrometry (IP-MRM). We compared IP-MRM to ELISA for the analysis of six colon cancer biomarker candidates (metalloproteinase inhibitor 1 (TIMP1), cartilage oligomeric matrix protein (COMP), thrombospondin-2 (THBS2), endoglin (ENG), mesothelin (MSLN) and matrix metalloproteinase-9 (MMP9)) in plasma from colon cancer patients and noncancer controls. Proteins were analyzed by multiplex immunoprecipitation from plasma with the ELISA capture antibodies, further purified by SDS-PAGE, digested and analyzed by stable isotope dilution MRM. IP-MRM provided linear responses (<i>r</i> = 0.978–0.995) between 10 and 640 ng/mL for the target proteins spiked into a “mock plasma” matrix consisting of 60 mg/mL bovine serum albumin. Measurement variation (coefficient of variation at the limit of detection) for IP-MRM assays ranged from 2.3 to 19%, which was similar to variation for ELISAs of the same samples. IP-MRM and ELISA measurements for all target proteins except ENG were highly correlated (<i>r</i> = 0.67–0.97). IP-MRM with high-quality capture antibodies thus provides an effective alternative method to ELISA for protein quantitation in biological fluids

    Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels

    No full text
    Over the past several years, proprotein convertase subtilisin kexin type 9 (PCSK9) has gained significant attention as a key regulator of serum LDL-cholesterol (LDL-C) levels. In humans, gain-of-function mutations in PCSK9 cause a form of familial hypercholesterolemia, whereas loss-of-function mutations result in significantly decreased LDL-C and cardiovascular risk. Our laboratory was the first to demonstrate that atorvastatin increases PCSK9 serum levels, an observation that has since been confirmed by at least two other groups. In light of these observations, we studied the effect of another common lipid-lowering medication, fenofibrate, on circulating PCSK9 protein levels in patients treated with fenofibrate or placebo for 12 weeks. We observed that fenofibrate (200 mg per day) significantly increased circulating PCSK9 levels by 25% compared with baseline. Placebo treatment, in comparison, had no effect on PCSK9 levels. Interestingly, fenofibrate-induced increases in serum PCSK9 levels were highly correlated with fenofibrate-induced changes in HDL-C and triglyceride levels, as well as with fenofibrate-induced changes in LDL-C levels. These results suggest an explanation for why fibrates do not achieve as much LDL-C lowering as might otherwise be expected and indicate that the addition of a PCSK9 inhibitor to fibrate therapy may result in additional beneficial LDL-C lowering

    Phenotype-Driven Plasma Biobanking Strategies and Methods

    No full text
    Biobank development and integration with clinical data from electronic medical record (EMR) databases have enabled recent strides in genomic research and personalized medicine. BioVU, Vanderbilt’s DNA biorepository linked to de-identified clinical EMRs, has proven fruitful in its capacity to extensively appeal to numerous areas of biomedical and clinical research, supporting the discovery of genotype-phenotype interactions. Expanding on experiences in BioVU creation and development, we have recently embarked on a parallel effort to collect plasma in addition to DNA from blood specimens leftover after routine clinical testing at Vanderbilt. This initiative offers expanded utility of BioVU by combining proteomic and metabolomic approaches with genomics and/or clinical outcomes, widening the breadth for potential research and subsequent future impact on clinical care. Here, we describe the considerations and components involved in implementing a plasma biobank program from a feasibility assessment through pilot sample collection

    Genome of the Bacterium Streptococcus pneumoniae Strain R6

    No full text
    Streptococcus pneumoniae is among the most significant causes of bacterial disease in humans. Here we report the 2,038,615-bp genomic sequence of the gram-positive bacterium S. pneumoniae R6. Because the R6 strain is avirulent and, more importantly, because it is readily transformed with DNA from homologous species and many heterologous species, it is the principal platform for investigation of the biology of this important pathogen. It is also used as a primary vehicle for genomics-based development of antibiotics for gram-positive bacteria. In our analysis of the genome, we identified a large number of new uncharacterized genes predicted to encode proteins that either reside on the surface of the cell or are secreted. Among those proteins there may be new targets for vaccine and antibiotic development
    corecore