37 research outputs found

    Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard

    Get PDF
    DNA origami, in which a long scaffold strand is assembled with a many short staple strands into parallel arrays of double helices, has proven a powerful method for custom nanofabrication. However, currently the design and optimization of custom 3D DNA-origami shapes is a barrier to rapid application to new areas. Here we introduce a modular barrel architecture, and demonstrate hierarchical assembly of a 100 megadalton DNA-origami barrel of similar to 90nm diameter and similar to 250nm height, that provides a rhombic-lattice canvas of a thousand pixels each, with pitch of similar to 8nm, on its inner and outer surfaces. Complex patterns rendered on these surfaces were resolved using up to twelve rounds of Exchange-PAINT super-resolution microscopy. We envision these structures as versatile nanoscale pegboards for applications requiring complex 3D arrangements of matter, which will serve to promote rapid uptake of this technology in diverse fields beyond specialist groups working in DNA nanotechnology

    Bicistronic Lentiviruses Containing a Viral 2A Cleavage Sequence Reliably Co-Express Two Proteins and Restore Vision to an Animal Model of LCA1

    Get PDF
    The disease processes underlying inherited retinal disease are complex and are not completely understood. Many of the corrective gene therapies designed to treat diseases linked to mutations in genes specifically expressed in photoreceptor cells restore function to these cells but fail to stop progression of the disease. There is growing consensus that effective treatments for these diseases will require delivery of multiple therapeutic proteins that will be selected to treat specific aspects of the disease process. The purpose of this study was to design a lentiviral transgene that reliably expresses all of the proteins it encodes and does so in a consistent manner among infected cells. We show, using both in vitro and in vivo analyses, that bicistronic lentiviral transgenes encoding two fluorescent proteins fused to a viral 2A-like cleavage peptide meet these expression criteria. To determine if this transgene design is suitable for therapeutic applications, we replaced one of the fluorescent protein genes with the gene encoding guanylate cyclase -1 (GC1) and delivered lentivirus carrying this transgene to the retinas of the GUCY1*B avian model of Leber congenital amaurosis – 1 (LCA1). GUCY1*B chickens carry a null mutation in the GC1 gene that disrupts photoreceptor function and causes blindness at hatching, a phenotype that closely matches that observed in humans with LCA1. We found that treatment of these animals with the 2A lentivector encoding GC1 restored vision to these animals as evidenced by the presence of optokinetic reflexes. We conclude that 2A-like peptides, with proper optimization, can be successfully incorporated into therapeutic vectors designed to deliver multiple proteins to neural retinal. These results highlight the potential of this vector design to serve as a platform for the development of combination therapies designed to enhance or prolong the benefits of corrective gene therapies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Basic marketing : a managerial approach

    No full text
    xviii, 749 p. : il.; 25 c

    Basic marketing: a managerial approach

    No full text
    xix+762hlm.;23c
    corecore