22 research outputs found

    Disposable Platform Provides Visual and Color-Based Point-of-Care Anemia Self-Testing

    Get PDF
    Anemia, or low blood hemoglobin (Hgb) levels, afflicts 2 billion people worldwide. Currently, Hgb levels are typically measured from blood samples using hematology analyzers, which are housed in hospitals, clinics, or commercial laboratories and require skilled technicians to operate. A reliable, inexpensive point-of-care (POC) Hgb test would enable cost-effective anemia screening and chronically anemic patients to self-monitor their disease. We present a rapid, standalone, and disposable POC anemia test that, via a single drop of blood, outputs color-based visual results that correlate with Hgb levels. METHODS. We tested blood from 238 pediatric and adult patients with anemia of varying degrees and etiologies and compared hematology analyzer Hgb levels with POC Hgb levels, which were estimated via visual interpretation using a color scale and an optional smartphone app for automated analysis. RESULTS. POC Hgb levels correlated with hematology analyzer Hgb levels (r = 0.864 and r = 0.856 for visual interpretation and smartphone app, respectively), and both POC test methods yielded comparable sensitivity and specificity for detecting any anemia (n = 178) (/dl) (sensitivity: 90.2% and 91.1%, specificity: 83.7% and 79.2%, respectively) and severe anemia (n = 10) (/dl) (sensitivity: 90.0% and 100%, specificity: 94.6% and 93.9%, respectively). CONCLUSIONS. These results demonstrate the feasibility of this POC color-based diagnostic test for self-screening/self-monitoring of anemia. TRIAL REGISTRATION. Not applicable. FUNDING. This work was funded by the FDA-funded Atlantic Pediatric Device Consortium, the Georgia Research Alliance, Children\u27s Healthcare of Atlanta, the Georgia Center of Innovation for Manufacturing, and the InVenture Prize and Ideas to Serve competitions at the Georgia Institute of Technology

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm(-2)) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.Peer reviewe

    Methane efflux from an American bison herd

    No full text
    American bison (Bison bison L.) have recovered from the brink of extinction over the past century. Bison reintroduction creates multiple environmental benefits, but impacts on greenhouse gas emissions are poorly understood. Bison are thought to have produced some 2 Tg yr-1 of the estimated 9 15 Tg yr-1 of pre-industrial enteric methane emissions, but few measurements have been made due to their mobile grazing habits and safety issues associated with measuring non-domesticated animals. Here, we measure methane and carbon dioxide fluxes from a bison herd on an enclosed pasture during daytime periods in winter using eddy covariance. Methane emissions from the study area were negligible in the absence of bison (mean ± standard deviation = -0.0009 ± 0.008 μmol m-2 s-1) and were significantly greater than zero, 0.048 ± 0.082 μmol m-2 s-1, with a positively skewed distribution, when bison were present. We coupled bison location estimates from automated camera images with two independent flux footprint models to calculate a mean per-animal methane efflux of 58.5 μmol s-1 per bison, similar to eddy covariance measurements of methane efflux from a cattle feedlot during winter. When we sum the observations over time with conservative uncertainty estimates we arrive at 81 g CH4 per bison d-1 with 95 % confidence intervals between 54 and 109 g CH4 per bison d-1. Uncertainty was dominated by bison location estimates (46 % of the total uncertainty), then the flux footprint model (33 %) and the eddy covariance measurements (21 %), suggesting that making higher-resolution animal location estimates is a logical starting point for decreasing total uncertainty. Annual measurements are ultimately necessary to determine the full greenhouse gas burden of bison grazing systems. Our observations highlight the need to compare greenhouse gas emissions from different ruminant grazing systems and demonstrate the potential for using eddy covariance to measure methane efflux from non-domesticated animals

    Toward a Social-Ecological Theory of Forest Macrosystems for Improved Ecosystem Management

    No full text
    The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales

    PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices

    No full text
    © 2019 IOP Publishing Ltd. Objective. Intracellular patch-clamp electrophysiology, one of the most ubiquitous, high-fidelity techniques in biophysics, remains laborious and low-throughput. While previous efforts have succeeded at automating some steps of the technique, here we demonstrate a robotic 'PatcherBot' system that can perform many patch-clamp recordings sequentially, fully unattended. Approach. Comprehensive automation is accomplished by outfitting the robot with machine vision, and cleaning pipettes instead of manually exchanging them. Main results. the PatcherBot can obtain data at a rate of 16 cells per hour and work with no human intervention for up to 3 h. We demonstrate the broad applicability and scalability of this system by performing hundreds of recordings in tissue culture cells and mouse brain slices with no human supervision. Using the PatcherBot, we also discovered that pipette cleaning can be improved by a factor of three. Significance. The system is potentially transformative for applications that depend on many high-quality measurements of single cells, such as drug screening, protein functional characterization, and multimodal cell type investigations
    corecore