94 research outputs found

    SeaWiFS technical report series. Volume 10: Modeling of the SeaWiFS solar and lunar observations

    Get PDF
    Post-launch stability monitoring of the Sea-viewing Wide Field-of-view Sensor (SeaWifs) will include periodic sweeps of both an onboard solar diffuser plate and the moon. The diffuser views will provide short-term checks and the lunar views will monitor long-term trends in the instrument's radiometric stability. Models of the expected sensor response to these observations were created on the SeaWiFS computer at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) using the Interactive Data Language (IDL) utility with a graphical user interface (GUI). The solar model uses the area of intersecting circles to simulate the ramping of sensor response while viewing the diffuser. This model is compared with preflight laboratory scans of the solar diffuser. The lunar model reads a high-resolution lunar image as input. The observations of the moon are simulated with a bright target recovery algorithm that includes ramping and ringing functions. Tests using the lunar model indicate that the integrated radiance of the entire lunar surface provides a more stable quantity than the mean of radiances from centralized pixels. The lunar model is compared to ground-based scans by the SeaWiFS instrument of a full moon in December 1992. Quality assurance and trend analyses routines for calibration and for telemetry data are also discussed

    SeaWiFS technical report series. Volume 22: Prelaunch acceptance report for the SeaWFS radiometer

    Get PDF
    The final acceptance, or rejection, of the Sea-viewing Wide field-of-view Sensor (SeaWiFS) will be determined by the instrument's on-orbit operation. There is, however, an extensive set of laboratory measurements describing the operating characteristics of the radiometer. Many of the requirements in the Ocean Color Data Mission (OCDM) specifications can be checked only by laboratory measurements. Here, the calibration review panel (composed of the authors of this technical memorandum) examines the laboratory characterization and calibration of SeaWiFS in the light of the OCDM performance specification. Overall, the performance of the SeaWiFS instrument meets or exceeds the requirements of the OCDM contract in all but a few unimportant details. The detailed results of this examination are presented here by following the outline of the specifications, as found in the Contract. The results are presented in the form of requirements and compliance pairs. These results give conclusions on many, but not all, of the performance specifications. The acceptance of this panel of the performance of SeaWiFS must only be considered as an intermediate conclusion. The ultimate acceptance (or rejection) of the SeaWiFS data set will rely on the measurements made by the instrument on orbit

    SeaWiFS Technical Report Series. Volume 22: Prelaunch Acceptance Report for the SeaWiFS Radiometer

    Get PDF
    The final acceptance, or rejection, of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be determined by the instrument's on-orbit operation. There is, however, an extensive set of laboratory measurements describing the operating characteristics of the radiometer. Many of the requirements in the Ocean Color Data Mission (OCDM) specifications can be checked only by laboratory measurements. Here, the calibration review panel examines the laboratory characterization and calibration of SeaWiFS in the light of the OCDM performance specification. Overall, the performance of the SeaWiFS instrument meets or exceeds the requirements of the OCDM contract in all but a few unimportant details. The detailed results of this examination are presented here by following the outline of the specifications, as found in the Contract. The results are presented in the form of requirements and compliance pairs. These results give conclusions on many, but not all, of the performance specifications. The acceptance by this panel of the performance of SeaWiFS must only be considered as an intermediate conclusion. The ultimate acceptance (or rejection) of the SeaWiFS data set will rely on the measurements made by the instrument on orbit

    SeaWiFS technical report series. Volume 23: SeaWiFS prelaunch radiometric calibration and spectral characterization

    Get PDF
    Based on the operating characteristics of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), calibration equations have been developed that allow conversion of the counts from the radiometer into Earth-existing radiances. These radiances are the geophysical properties the instrument has been designed to measure. SeaWiFS uses bilinear gains to allow high sensitivity measurements of ocean-leaving radiances and low sensitivity measurements of radiances from clouds, which are much brighter than the ocean. The calculation of these bilinear gains is central to the calibration equations. Several other factors within these equations are also included. Among these are the spectral responses of the eight SeaWiFS bands. A band's spectral response includes the ability of the band to isolate a portion of the electromagnetic spectrum and the amount of light that lies outside of that region. The latter is termed out-of-band response. In the calibration procedure, some of the counts from the instrument are produced by radiance in the out-of-band region. The number of those counts for each band is a function of the spectral shape of the source. For the SeaWiFS calibration equations, the out-of-band responses are converted from those for the laboratory source into those for a source with the spectral shape of solar flux. The solar flux, unlike the laboratory calibration, approximates the spectral shape of the Earth-existing radiance from the oceans. This conversion modifies the results from the laboratory radiometric calibration by 1-4 percent, depending on the band. These and other factors in the SeaWiFS calibration equations are presented here, both for users of the SeaWiFS data set and for researchers making ground-based radiance measurements in support of Sea WiFS

    SeaWiFS Technical Report Series

    Get PDF
    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm

    Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments

    Get PDF
    Part 1 of this study investigated evidence of biomass burning in global ice records, and here we continue to test the hypothesis that an impact event at the Younger Dryas boundary (YDB) caused an anomalously intense episode of biomass burning at ∼12.8 ka on a multicontinental scale (North and South America, Europe, and Asia). Quantitative analyses of charcoal and soot records from 152 lakes, marine cores, and terrestrial sequences reveal a major peak in biomass burning at the Younger Dryas (YD) onset that appears to be the highest during the latest Quaternary. For the Cretaceous-Tertiary boundary (K-Pg) impact event, concentrations of soot were previously utilized to estimate the global amount of biomass burned, and similar measurements suggest that wildfires at the YD onset rapidly consumed ∼10 million km2 of Earth’s surface, or ∼9% of Earth’s biomass, considerably more than for the K-Pg impact. Bayesian analyses and age regressions demonstrate that ages for YDB peaks in charcoal and soot across four continents are synchronous with the ages of an abundance peak in platinum in the Greenland Ice Sheet Project 2 (GISP2) ice core and of the YDB impact event (12,835–12,735 cal BP). Thus, existing evidence indicates that the YDB impact event caused an anomalously large episode of biomass burning, resulting in extensive atmospheric soot/dust loading that triggered an “impact winter.” This, in turn, triggered abrupt YD cooling and other climate changes, reinforced by climatic feedback mechanisms, including Arctic sea ice expansion, rerouting of North American continental runoff, and subsequent ocean circulation changes
    corecore