284 research outputs found

    Evaluation of a Bayesian inference network for ligand-based virtual screening

    Get PDF
    Background Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity. Results Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought. Conclusion A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening

    Evaluation of machine-learning methods for ligand-based virtual screening

    Get PDF
    Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed

    2D-Qsar for 450 types of amino acid induction peptides with a novel substructure pair descriptor having wider scope

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative structure-activity relationships (QSAR) analysis of peptides is helpful for designing various types of drugs such as kinase inhibitor or antigen. Capturing various properties of peptides is essential for analyzing two-dimensional QSAR. A descriptor of peptides is an important element for capturing properties. The atom pair holographic (APH) code is designed for the description of peptides and it represents peptides as the combination of thirty-six types of key atoms and their intermediate binding between two key atoms.</p> <p>Results</p> <p>The substructure pair descriptor (SPAD) represents peptides as the combination of forty-nine types of key substructures and the sequence of amino acid residues between two substructures. The size of the key substructures is larger and the length of the sequence is longer than traditional descriptors. Similarity searches on C5a inhibitor data set and kinase inhibitor data set showed that order of inhibitors become three times higher by representing peptides with SPAD, respectively. Comparing scope of each descriptor shows that SPAD captures different properties from APH.</p> <p>Conclusion</p> <p>QSAR/QSPR for peptides is helpful for designing various types of drugs such as kinase inhibitor and antigen. SPAD is a novel and powerful descriptor for various types of peptides. Accuracy of QSAR/QSPR becomes higher by describing peptides with SPAD.</p

    Is a Calorie Really a Calorie? Metabolic Advantage of Low-Carbohydrate Diets

    Get PDF
    The first law of thermodynamics dictates that body mass remains constant when caloric intake equals caloric expenditure. It should be noted, however, that different diets lead to different biochemical pathways that are not equivalent when correctly compared through the laws of thermodynamics. It is inappropriate to assume that the only thing that counts in terms of food consumption and energy balance is the intake of dietary calories and weight storage. Well-controlled studies suggest that calorie content may not be as predictive of fat loss as is reduced carbohydrate consumption. Biologically speaking, a calorie is certainly not a calorie. The ideal weight loss diet, if it even exists, remains to be determined, but a high-carbohydrate/low-protein diet may be unsatisfactory for many obese individuals

    Therapeutic efficacy of intra-articular delivery of encapsulated human mesenchymal stem cells on early stage osteoarthritis

    Get PDF
    Mesenchymal stem cells (MSCs) represent a great therapeutic promise in pre-clinical models of osteoarthritis (OA), but many questions remain as to their therapeutic mechanism of action: engraftment versus paracrine action. Encapsulation of human MSCs (hMSCs) in sodium alginate microspheres allowed for the paracrine signaling properties of these cells to be isolated and studied independently of direct cellular engraftment. The objective of the present study was to quantitatively assess the efficacy of encapsulated hMSCs as a disease-modifying therapeutic for OA, using a medial meniscal tear (MMT) rat model. It was hypothesized that encapsulated hMSCs would have a therapeutic effect, through paracrine-mediated action, on early OA development. Lewis rats underwent MMT surgery to induce OA. 1 d post-surgery, rats received intra-articular injections of encapsulated hMSCs or controls (i.e., saline, empty capsules, non-encapsulated hMSCs). Microstructural changes in the knee joint were quantified using equilibrium partitioning of a ionic contrast agent based micro-computed tomography (EPIC-μCT) at 3 weeks post-surgery, an established time point for early OA. Encapsulated hMSCs significantly attenuated MMT-induced increases in articular cartilage swelling and surface roughness and augmented cartilaginous and mineralized osteophyte volumes. Cellular encapsulation allowed to isolate the hMSC paracrine signaling effects and demonstrated that hMSCs could exert a chondroprotective therapeutic role on early stage OA through paracrine signaling alone. In addition to this chondroprotective role, encapsulated hMSCs augmented the compensatory increases in osteophyte formation. The latter should be taken into strong consideration as many clinical trials using MSCs for OA are currently ongoing

    "A calorie is a calorie" violates the second law of thermodynamics

    Get PDF
    The principle of "a calorie is a calorie," that weight change in hypocaloric diets is independent of macronutrient composition, is widely held in the popular and technical literature, and is frequently justified by appeal to the laws of thermodynamics. We review here some aspects of thermodynamics that bear on weight loss and the effect of macronutrient composition. The focus is the so-called metabolic advantage in low-carbohydrate diets – greater weight loss compared to isocaloric diets of different composition. Two laws of thermodynamics are relevant to the systems considered in nutrition and, whereas the first law is a conservation (of energy) law, the second is a dissipation law: something (negative entropy) is lost and therefore balance is not to be expected in diet interventions. Here, we propose that a misunderstanding of the second law accounts for the controversy about the role of macronutrient effect on weight loss and we review some aspects of elementary thermodynamics. We use data in the literature to show that thermogenesis is sufficient to predict metabolic advantage. Whereas homeostasis ensures balance under many conditions, as a general principle, "a calorie is a calorie" violates the second law of thermodynamics

    Nutrition education: a questionnaire for assessment and teaching

    Get PDF
    It is generally recognized that there is a need for improved teaching of nutrition in medical schools and for increased education of the general population. A questionnaire, derived in part from a study of physician knowledge, was administered to first year medical students in order to assess their knowledge of various aspects of nutrition and metabolism, and as a teaching tool to transmit information about the subject. The performance of first year students was consistent with a generally educated population but there were surprising deficits in some fundamental areas of nutrition. Results of the questionnaire are informative about student knowledge, and immediate reinforcement from a questionnaire may provide a useful teaching tool. In addition, some of the subject matter can serve as a springboard for discussion of critical issues in nutrition such as obesity and markers for cardiovascular disease. A major barrier to improved teaching of nutrition is the lack of agreement on some of these critical issues and there are apparent inconsistencies in recommendations of government and health agencies. It seems reasonable that improved teaching should address the lack of knowledge of nutrition, rather than knowledge of official guidelines. Student awareness of factual information should be the primary goal

    PM2.5 metal exposures and nocturnal heart rate variability: a panel study of boilermaker construction workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To better understand the mechanism(s) of particulate matter (PM) associated cardiovascular effects, research priorities include identifying the responsible PM characteristics. Evidence suggests that metals play a role in the cardiotoxicity of fine PM (PM<sub>2.5</sub>) and in exposure-related decreases in heart rate variability (HRV). We examined the association between daytime exposure to the metal content of PM<sub>2.5 </sub>and night HRV in a panel study of boilermaker construction workers exposed to metal-rich welding fumes.</p> <p>Methods</p> <p>Twenty-six male workers were monitored by ambulatory electrocardiogram (ECG) on a workday while exposed to welding fume and a non-workday (baseline). From the ECG, rMSSD (square root of the mean squared differences of successive intervals) was summarized over the night (0:00–7:00). Workday, gravimetric PM<sub>2.5 </sub>samples were analyzed by x-ray fluorescence to determine metal content. We used linear mixed effects models to assess the associations between night rMSSD and PM<sub>2.5 </sub>metal exposures both with and without adjustment for total PM<sub>2.5</sub>. Matched ECG measurements from the non-workday were used to control for individual cardiac risk factors and models were also adjusted for smoking status. To address collinearity between PM<sub>2.5 </sub>and metal content, we used a two-step approach that treated the residuals from linear regression models of each metal on PM<sub>2.5 </sub>as surrogates for the differential effects of metal exposures in models for night rMSSD.</p> <p>Results</p> <p>The median PM<sub>2.5 </sub>exposure was 650 μg/m<sup>3</sup>; median metal exposures for iron, manganese, aluminum, copper, zinc, chromium, lead, and nickel ranged from 226 μg/m<sup>3 </sup>to non-detectable. We found inverse linear associations in exposure-response models with increased metal exposures associated with decreased night rMSSD. A statistically significant association for manganese was observed, with a decline of 0.130 msec (95% CI: -0.162, -0.098) in night rMSSD for every 1 μg/m<sup>3 </sup>increase in manganese. However, even after adjusting for individual metals, increases in total PM<sub>2.5 </sub>exposures were associated with declines in night rMSSD.</p> <p>Conclusion</p> <p>These results support the cardiotoxicity of PM<sub>2.5 </sub>metal exposures, specifically manganese. However the metal component alone did not account for the observed declines in night HRV. Therefore, results suggest the importance of other PM elemental components.</p

    The risk of child and adolescent overweight is related to types of food consumed

    Get PDF
    <p>Abstract</p> <p>Background/Aims</p> <p>To investigate the association between the risk of overweight and the consumption of food groups in children and adolescents.</p> <p>Methods</p> <p>We studied 1764 healthy children and adolescents (age 6-19y) attending 16 Seventh-Day Adventist schools and 13 public schools using a 106-item non-quantitative food frequency questionnaire from the late 1980 Child-Adolescent Blood Pressure Study. Logistic regression models were used to compute the risk of overweight according to consumption of grains, nuts, vegetables, fruits, meats/fish/eggs, dairy, and, low nutrient-dense foods (LNDF).</p> <p>Results</p> <p>The frequency of consumption of grains, nuts, vegetables and LNDF were inversely related to the risk of being overweight and dairy increased the risk. Specifically, the odds ratio (95% CI) for children in the highest quartile or tertile of consumption compared with the lowest quartile or tertile were as follows: grains 0.59(0.41-0.83); nuts 0.60(0.43-0.85); vegetables 0.67(0.48-0.94); LNDF 0.43(0.29-0.63); and, dairy 1.36(0.97, 1.92).</p> <p>Conclusion</p> <p>The regular intake of specific plant foods may prevent overweight among children and adolescents.</p

    Gemcitabine with a specific conformal 3D 5FU radiochemotherapy technique is safe and effective in the definitive management of locally advanced pancreatic cancer

    Get PDF
    The aim of this phase II study was to assess the feasibility and efficacy of a specific three-dimensional conformal radiotherapy technique with concurrent continuous infusion of 5-fluorouracil (CI 5FU) sandwiched between gemcitabine chemotherapy in patients with locally advanced pancreatic cancer. Patients with inoperable cancer in the pancreatic head or body without metastases were given gemcitabine at 1000 mg m−2 weekly for 3 weeks followed by a 1-week rest and a 6-week period of radiotherapy and concurrent CI 5FU (200 mg m−2 day−1). The defined target volume was treated to 54 Gy in 30 daily fractions of 1.8 Gy. After 4 weeks' rest, gemcitabine treatment was re-initiated for three cycles (days 1, 8, 15, q28). Forty-one patients were enrolled. At the end of radiotherapy, one patient (2.4%) had a complete response and four patients (9.6%) had a partial response; at the end of treatment, three patients (7.3%) had a complete response and two patients (4.9%) had a partial response. Median survival time was 11.7 months, median time to progression was 7.1 months, and median time to failure of local control was 11.9 months. The 1- and 2-year survival rates were 46.3 and 9.8%, respectively. Treatment-related grade 3 and 4 toxicities were reported by 16 (39.0%) and four (9.8%) patients, respectively. Sixteen out of 41 patients did not complete the planned treatment and nine due to disease progression. This approach to treatment of locally advanced pancreatic cancer is safe and promising, with good local control for a substantial proportion of patients, and merits testing in a randomised trial
    corecore