31 research outputs found

    Predominance of Ancestral Lineages of Mycobacterium tuberculosis in India

    Get PDF
    Molecular epidemiologic findings suggest an ancient focus of TB

    Unconventional surface plasmon resonance signals reveal quantitative inhibition of transcriptional repressor EthR by synthetic ligands

    Get PDF
    International audienceEthR is a mycobacterial repressor that limits the bioactivation of ethionamide, a commonly used anti-tuberculosis second-line drug. Several efforts have been deployed to identify EthR inhibitors abolishing the DNA-binding activity of the repressor. This led to the demonstration that stimulating the bioactivation of ETH through EthR inhibition could be an alternative way to fight Mycobacterium tuberculosis. We propose a new SPR methodology to study the affinity between inhibitors and EthR. Interestingly, the binding between inhibitors and immobilized EthR produced a dose dependent negative SPR signal. We demonstrated that this signal reveals the affinity of the small molecules for the repressor. The affinity constants (KD) correlated with their capacity to inhibit the binding of EthR to DNA. We hypothesize that conformational changes of EthR during ligand interaction could be responsible for this SPR signal. Practically, this unconventional result open perspectives to the development of SPR assay that would at the same time tough on the structural changes of the target upon binding with an inhibitor and on the binding constant of this interaction

    Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands

    Get PDF
    Ethionamide is an antituberculous drug for the treatment of multidrug-resistant Mycobacterium tuberculosis. This antibiotic requires activation by the monooxygenase EthA to exert its activity. Production of EthA is controlled by the transcriptional repressor EthR, a member of the TetR family. The sensitivity of M. tuberculosis to ethionamide can be artificially enhanced using synthetic ligands of EthR that allosterically inactivate its DNA-binding activity. Comparison of several structures of EthR co-crystallized with various ligands suggested that the structural reorganization of EthR resulting in its inactivation is controlled by a limited portion of the ligand-binding-pocket. In silico simulation predicted that mutation G106W may mimic ligands. X-ray crystallography of variant G106W indeed revealed a protein structurally similar to ligand-bound EthR. Surface plasmon resonance experiments established that this variant is unable to bind DNA, while thermal shift studies demonstrated that mutation G106W stabilizes EthR as strongly as ligands. Proton NMR of the methyl regions showed a lesser contribution of exchange broadening upon ligand binding, and the same quenched dynamics was observed in apo-variant G106W. Altogether, we here show that the area surrounding Gly106 constitutes the molecular switch involved in the conformational reorganization of EthR. These results also shed light on the mechanistic of ligand-induced allosterism controlling the DNA binding properties of TetR family repressors

    Molecular Evolution of the Two-Component System BvgAS Involved in Virulence Regulation in Bordetella

    Get PDF
    The whooping cough agent Bordetella pertussis is closely related to Bordetella bronchiseptica, which is responsible for chronic respiratory infections in various mammals and is occasionally found in humans, and to Bordetella parapertussis, one lineage of which causes mild whooping cough in humans and the other ovine respiratory infections. All three species produce similar sets of virulence factors that are co-regulated by the two-component system BvgAS. We characterized the molecular diversity of BvgAS in Bordetella by sequencing the two genes from a large number of diverse isolates. The response regulator BvgA is virtually invariant, indicating strong functional constraints. In contrast, the multi-domain sensor kinase BvgS has evolved into two different types. The pertussis type is found in B. pertussis and in a lineage of essentially human-associated B. bronchiseptica, while the bronchiseptica type is associated with the majority of B. bronchiseptica and both ovine and human B. parapertussis. BvgS is monomorphic in B. pertussis, suggesting optimal adaptation or a recent population bottleneck. The degree of diversity of the bronchiseptica type BvgS is markedly different between domains, indicating distinct evolutionary pressures. Thus, absolute conservation of the putative solute-binding cavities of the two periplasmic Venus Fly Trap (VFT) domains suggests that common signals are perceived in all three species, while the external surfaces of these domains vary more extensively. Co-evolution of the surfaces of the two VFT domains in each type and domain swapping experiments indicate that signal transduction in the periplasmic region may be type-specific. The two distinct evolutionary solutions for BvgS confirm that B. pertussis has emerged from a specific B. bronchiseptica lineage. The invariant regions of BvgS point to essential parts for its molecular mechanism, while the variable regions may indicate adaptations to different lifestyles. The repertoire of BvgS sequences will pave the way for functional analyses of this prototypic system

    The Forest behind the Tree: Phylogenetic Exploration of a Dominant Mycobacterium tuberculosis Strain Lineage from a High Tuberculosis Burden Country

    Get PDF
    BACKGROUND: Genotyping of Mycobacterium tuberculosis isolates is a powerful tool for epidemiological control of tuberculosis (TB) and phylogenetic exploration of the pathogen. Standardized PCR-based typing, based on 15 to 24 mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) loci combined with spoligotyping, has been shown to have adequate resolution power for tracing TB transmission and to be useful for predicting diverse strain lineages in European settings. Its informative value needs to be tested in high TB-burden countries, where the use of genotyping is often complicated by dominance of geographically specific, genetically homogeneous strain lineages. METHODOLOGY/PRINCIPAL FINDINGS: We tested this genotyping system for molecular epidemiological analysis of 369 M. tuberculosis isolates from 3 regions of Brazil, a high TB-burden country. Deligotyping, targeting 43 large sequence polymorphisms (LSPs), and the MIRU-VNTRplus identification database were used to assess phylogenetic predictions. High congruence between the different typing results consistently revealed the countrywide supremacy of the Latin-American-Mediterranean (LAM) lineage, comprised of three main branches. In addition to an already known RDRio branch, at least one other branch characterized by a phylogenetically informative LAM3 spoligo-signature seems to be globally distributed beyond Brazil. Nevertheless, by distinguishing 321 genotypes in this strain population, combined MIRU-VNTR typing and spoligotyping demonstrated the presence of multiple distinct clones. The use of 15 to 24 loci discriminated 21 to 25% more strains within the LAM lineage, compared to a restricted lineage-specific locus set suggested to be used after SNP analysis. Noteworthy, 23 of the 28 molecular clusters identified were exclusively composed of patient isolates from a same region, consistent with expected patterns of mostly local TB transmission. CONCLUSIONS/SIGNIFICANCE: Standard MIRU-VNTR typing combined with spoligotyping can reveal epidemiologically meaningful clonal diversity behind a dominant M. tuberculosis strain lineage in a high TB-burden country and is useful to explore international phylogenetical ramifications

    Production of Nontypeable Haemophilus influenzae HtrA by Recombinant Bordetella pertussis with the Use of Filamentous Hemagglutinin as a Carrier

    No full text
    Bordetella pertussis, the etiologic agent of whooping cough, is a highly infectious human pathogen capable of inducing mucosal and systemic immune responses upon a single intranasal administration. In an attenuated, pertussis toxin (PTX)-deficient recombinant form, it may therefore constitute an efficient bacterial vector that is particularly well adapted for the delivery of heterologous antigens to the respiratory mucosa. Filamentous hemagglutinin (FHA) has been used as a carrier to present foreign antigens at the bacterial surface, thereby inducing local, systemic, and protective immune responses to these antigens in mice. Both full-length and truncated (Fha44) forms of FHA have been used for antigen presentation. To investigate the effect of the carrier (FHA or Fha44) on antibody responses to passenger antigens, we genetically fused the HtrA protein of nontypeable Haemophilus influenzae to either FHA form. The fha-htrA and Fha44 gene-htrA hybrids were expressed as single copies inserted into the chromosome of PTX-deficient B. pertussis. Both chimeras were secreted into the culture supernatants of the recombinant strains and were recognized by anti-FHA and anti-HtrA antibodies. Intranasal infection with the strain producing the FHA-HtrA hybrid led to significantly higher anti-HtrA and anti-FHA antibody titers than those obtained in mice infected with the Fha44-HtrA-producing strain. Interestingly, the B. pertussis strain producing the Fha44-HtrA chimera colonized the mouse lungs more efficiently than the parental, Fha44-producing strain and gave rise to higher anti-FHA antibody titers than those induced by the parental strain

    Overrepresentation of a Gene Family Encoding Extracytoplasmic Solute Receptors in Bordetella

    No full text
    A family of genes that are likely to encode extracytoplasmic solute receptors is strongly overrepresented in several β-proteobacteria, including Bordetella pertussis. This gene family, of which members have been called bug genes, contains some examples that are contained within polycistronic operons coding for tripartite uptake transporters of the TTT family, while the vast majority are “orphan” genes. Proteomic and functional analyses demonstrated that several of these genes are expressed in B. pertussis, and one is involved in citrate uptake. The bug genes probably form an ancient family that has been subjected to a large expansion in a restricted phylogenic group

    Mixed infection and clonal representativeness of a single sputum sample in tuberculosis patients from a penitentiary hospital in Georgia

    No full text
    Abstract Background Studies on recurrent tuberculosis (TB), TB molecular epidemiology and drug susceptibility testing rely on the analysis of one Mycobacterium tuberculosis isolate from a single sputum sample collected at different disease episodes. This scheme rests on the postulate that a culture of one sputum sample is homogeneous and representative of the total bacillary population in a patient. Methods We systematically analysed several pre-treatment isolates from each of 199 smear-positive male adult inmates admitted to a prison TB hospital by standard IS6110 DNA fingerprinting, followed by PCR typing based on multiple loci containing variable number of tandem repeats (VNTRs) on a subset of isolates. Drug susceptibility testing (DST) was performed on all isolates for isoniazid, rifampicin, streptomycin and ethambutol. Results We found mixed infection in 26 (13.1%) cases. In contrast, analysis of a single pre-treatment isolate per patient would have led to missed mixed infections in all or 14 of these 26 cases by using only standard DNA fingerprinting or the PCR multilocus-based method, respectively. Differences in DST among isolates from the same patient were observed in 10 cases, of which 6 were from patients with mixed infection. Conclusion These results suggest that the actual heterogeneity of the bacillary population in patients, especially in high TB incidence settings, may be frequently underestimated using current analytical schemes. These findings have therefore important implications for correct interpretation and evaluation of molecular epidemiology data and in treatment evaluations.</p
    corecore