412 research outputs found

    Mathematical modelling of polyamine metabolism in bloodstream-form trypanosoma brucei: An application to drug target identification

    Get PDF
    © 2013 Gu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis article has been made available through the Brunel Open Access Publishing Fund.We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations. We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined. Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system. Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and measured data reported in various experimental conditions shows that the model has good applicability in spite of there being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT) and ornithine production (OrnPt) have more efficient inhibitory effect on total trypanothione content in comparison to other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione) were also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic strategy.The work was carried out under a PhD programme partly funded by Prof. Ray Welland, School of Computing Science, University of Glasgo

    Dynamic model of elastoplastic normal collision of spherical particles under nonlocal plasticity

    Get PDF
    The problem of normal collision of a spherical particle with a half-space is considered with allowance for nonlocal plastic deformation in the case where the strength limit depends on the contact radius, as well as for the strengthening effect in the deformed material. The dimensionless coefficient of normal velocity restitution has been calculated numerically as a function of the initial velocity of the spherical particle. The obtained data coincide well with experimental results available in the literature

    The Vitamin D Receptor Is a Wnt Effector that Controls Hair Follicle Differentiation and Specifies Tumor Type in Adult Epidermis

    Get PDF
    We have investigated how Wnt and vitamin D receptor signals regulate epidermal differentiation. Many epidermal genes induced by β-catenin, including the stem cell marker keratin 15, contain vitamin D response elements (VDREs) and several are induced independently of TCF/Lef. The VDR is required for β-catenin induced hair follicle formation in adult epidermis, and the vitamin D analog EB1089 synergises with β-catenin to stimulate hair differentiation. Human trichofolliculomas (hair follicle tumours) are characterized by high nuclear β-catenin and VDR, whereas infiltrative basal cell carcinomas (BCCs) have high β-catenin and low VDR levels. In mice, EB1089 prevents β-catenin induced trichofolliculomas, while in the absence of VDR β-catenin induces tumours resembling BCCs. We conclude that VDR is a TCF/Lef-independent transcriptional effector of the Wnt pathway and that vitamin D analogues have therapeutic potential in tumors with inappropriate activation of Wnt signalling

    Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila

    Get PDF
    The lipid-modified morphogens Wnt and Hedgehog diffuse poorly in isolation yet can spread over long distances in vivo, predicting existence of two distinct forms of these mophogens. The first is poorly mobile and activates short-range target genes. The second is specifically packed for efficient spreading to induce long-range targets. Subcellular mechanisms involved in the discriminative secretion of these two forms remain elusive. Wnt and Hedgehog can associate with membrane microdomains, but the function of this association was unknown. Here we show that a major protein component of membrane microdomains, reggie-1/flotillin-2, plays important roles in secretion and spreading of Wnt and Hedgehog in Drosophila. Reggie-1 loss-of-function results in reduced spreading of the morphogens, while its overexpression stimulates secretion of Wnt and Hedgehog and expands their diffusion. The resulting changes in the morphogen gradients differently affect the short- and long-range targets. In its action reggie-1 appears specific for Wnt and Hedgehog. These data suggest that reggie-1 is an important component of the Wnt and Hedgehog secretion pathway dedicated to formation of the mobile pool of these morphogens

    Liposomal Packaging Generates Wnt Protein with In Vivo Biological Activity

    Get PDF
    Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context

    Surface pretreatments for medical application of adhesion

    Get PDF
    Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body

    Wnt expression is not correlated with β-catenin dysregulation in Dupuytren's Disease

    Get PDF
    BACKGROUND: Dupuytren's contracture or disease (DD) is a fibro-proliferative disease of the hand that results in finger flexion contractures. Increased cellular β-catenin levels have been identified as characteristic of this disease. As Wnts are the most widely recognized upstream regulators of cellular β-catenin accumulation, we have examined Wnt gene expression in surgical specimens and in DD-derived primary cell cultures grown in two-dimensional monolayer culture or in three-dimensional FPCL collagen lattice cultures. RESULTS: The Wnt expression profile of patient-matched DD and unaffected control palmar fascia tissue was determined by a variety of complimentary methods; Affymetrix Microarray analysis, specific Wnt and degenerative primer-based Reverse Transcriptase (RT)-PCR, and Real Time PCR. Microarray analysis identified 13 Wnts associated with DD and control tissues. Degenerate Wnt RT-PCR analysis identified Wnts 10b and 11, and to a lesser extent 5a and 9a, as the major Wnt family members expressed in our patient samples. Competitive RT-PCR analysis identified significant differences between the levels of expression of Wnts 9a, 10b and 11 in tissue samples and in primary cell cultures grown as monolayer or in FPCL, where the mRNA levels in tissue > FPCL cultures > monolayer cultures. Real Time PCR data confirmed the down-regulation of Wnt 11 mRNA in DD while Wnt 10b, the most frequently isolated Wnt in DD and control palmar fascia, displayed widely variable expression between the methods of analysis. CONCLUSION: These data indicate that changes in Wnt expression per se are unlikely to be the cause of the observed dysregulation of β-catenin expression in DD

    RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro

    Get PDF
    Fat distribution is an independent cardiometabolic risk factor. However, its molecular and cellular underpinnings remain obscure. Here we demonstrate that two independent GWAS signals at RSPO3, which are associated with increased body mass index-adjusted waist-to-hip ratio, act to specifically increase RSPO3 expression in subcutaneous adipocytes. These variants are also associated with reduced lower-body fat, enlarged gluteal adipocytes and insulin resistance. Based on human cellular studies RSPO3 may limit gluteofemoral adipose tissue (AT) expansion by suppressing adipogenesis and increasing gluteal adipocyte susceptibility to apoptosis. RSPO3 may also promote upper-body fat distribution by stimulating abdominal adipose progenitor (AP) proliferation. The distinct biological responses elicited by RSPO3 in abdominal versus gluteal APs in vitro are associated with differential changes in WNT signalling. Zebrafish carrying a nonsense rspo3 mutation display altered fat distribution. Our study identifies RSPO3 as an important determinant of peripheral AT storage capacity
    corecore