3,112 research outputs found
The Divine Clockwork: Bohr's correspondence principle and Nelson's stochastic mechanics for the atomic elliptic state
We consider the Bohr correspondence limit of the Schrodinger wave function
for an atomic elliptic state. We analyse this limit in the context of Nelson's
stochastic mechanics, exposing an underlying deterministic dynamical system in
which trajectories converge to Keplerian motion on an ellipse. This solves the
long standing problem of obtaining Kepler's laws of planetary motion in a
quantum mechanical setting. In this quantum mechanical setting, local mild
instabilities occur in the Kelperian orbit for eccentricities greater than
1/\sqrt{2} which do not occur classically.Comment: 42 pages, 18 figures, with typos corrected, updated abstract and
updated section 6.
Using a quantum dot as a high-frequency shot noise detector
We present the experimental realization of a Quantum Dot (QD) operating as a
high-frequency noise detector. Current fluctuations produced in a nearby
Quantum Point Contact (QPC) ionize the QD and induce transport through excited
states. The resulting transient current through the QD represents our detector
signal. We investigate its dependence on the QPC transmission and voltage bias.
We observe and explain a quantum threshold feature and a saturation in the
detector signal. This experimental and theoretical study is relevant in
understanding the backaction of a QPC used as a charge detector.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Improving primary care antimicrobial stewardship by implementing a peer audit and feedback intervention in Cape Town community healthcare centres
Background. The increasing prevalence of antibiotic resistance is a major threat to public health. Primary care, where 80% of antibiotics are consumed, is a pivotal setting to direct antimicrobial stewardship (AMS) efforts. However, the ideal model to improve antibiotic prescribing in primary care in low-resource settings is not known.Objective. To implement a multidisciplinary audit and feedback AMS intervention with the aim to improve appropriate antibiotic prescribing at primary care level.Methods. The intervention was implemented and monitored in 10 primary care centres of the Cape Town metropole between July 2017 and June 2019. The primary and secondary outcome measures were monthly adherence to a bundle of antibiotic quality process measures and monthly antibiotic consumption, respectively. Multidisciplinary audit and feedback meetings were initiated and integrated into facility clinical meetings. Two Excel tools were utilised to automatically calculate facility audit scores and consumption. Once a month, 10 antibiotic prescriptions were randomly selected for a peer review audit by the team. The prescriptions were audited for adherence to a bundle of seven antibiotic process measures using the standard treatment guidelines (STG) and Essential Medicines List (EML) as standard. Concurrently, primary care pharmacists monitored monthly antibiotic consumption by calculating defined daily doses (DDDs) per 100 prescriptions dispensed. Adherence and consumption feedback were regularly provided to the facilities. Learning collaboratives involving representative multidisciplinary teams were held twice-yearly. Pre-, baseline and post-intervention periods were defined as 6 months before, first 6 months and last 6 months of the study, respectively.Results. The mean overall adherence increased from 19% (baseline) to 47% (post intervention) (p<0.001). Of the 2 077 prescriptions analysed, 33.7% had an antibiotic prescribed inappropriately. No diagnosis had been captured in patient notes, and the antibiotic chosen was not according to the STG and EML in 30.1% and 31.7% of cases, respectively. Seasonal variation was observed in prescribing adherence, with significantly lower adherence in winter and spring months (adjusted odds ratio 0.60). A reduction of 12.9 DDDs between the pre- and post-intervention periods (p=0.0084) was documented, which represented a 19.3% decrease in antibiotic consumption.Conclusion. The study demonstrated that peer reviewed audit and feedback is an effective AMS intervention to improve antibiotic prescribing in primary care in a low-resource setting. The intervention, utilising existing resources and involving multidisciplinary engagement, may be incorporated into existing quality improvement processes at facility level, to ensure sustainable change
Differential activation of lumbar and sacral motor pools during walking at different speeds and slopes
Organization of spinal motor output has become of interest for investigating differential activation of lumbar and sacral motor pools during locomotor tasks. Motor pools are associated with functional grouping of motoneurons of the lower limb muscles. Here we examined how the spatiotemporal organization of lumbar and sacral motor pool activity during walking is orchestrated with slope of terrain and speed of progression. Ten subjects walked on an instrumented treadmill at different slopes and imposed speeds. Kinetics, kinematics, and electromyography of 16 lower limb muscles were recorded. The spinal locomotor output was assessed by decomposing the coordinated muscle activation profiles into a small set of common factors and by mapping them onto the rostrocaudal location of the motoneuron pools. Our results show that lumbar and sacral motor pool activity depend on slope and speed. Compared with level walking, sacral motor pools decrease their activity at negative slopes and increase at positive slopes, whereas lumbar motor pools increase their engagement when both positive and negative slope increase. These findings are consistent with a differential involvement of the lumbar and the sacral motor pools in relation to changes in positive and negative center of body mass mechanical power production due to slope and speed.NEW & NOTEWORTHY In this study, the spatiotemporal maps of motoneuron activity in the spinal cord were assessed during walking at different slopes and speeds. We found differential involvement of lumbar and sacral motor pools in relation to changes in positive and negative center of body mass power production due to slope and speed. The results are consistent with recent findings about the specialization of neuronal networks located at different segments of the spinal cord for performing specific locomotor tasks
Strong Secrecy for Multiple Access Channels
We show strongly secret achievable rate regions for two different wiretap
multiple-access channel coding problems. In the first problem, each encoder has
a private message and both together have a common message to transmit. The
encoders have entropy-limited access to common randomness. If no common
randomness is available, then the achievable region derived here does not allow
for the secret transmission of a common message. The second coding problem
assumes that the encoders do not have a common message nor access to common
randomness. However, they may have a conferencing link over which they may
iteratively exchange rate-limited information. This can be used to form a
common message and common randomness to reduce the second coding problem to the
first one. We give the example of a channel where the achievable region equals
zero without conferencing or common randomness and where conferencing
establishes the possibility of secret message transmission. Both coding
problems describe practically relevant networks which need to be secured
against eavesdropping attacks.Comment: 55 page
An improved constraint satisfaction adaptive neural network for job-shop scheduling
Copyright @ Springer Science + Business Media, LLC 2009This paper presents an improved constraint satisfaction adaptive neural network for job-shop scheduling problems. The neural network is constructed based on the constraint conditions of a job-shop scheduling problem. Its structure and neuron connections can change adaptively according to the real-time constraint satisfaction situations that arise during the solving process. Several heuristics are also integrated within the neural network to enhance its convergence, accelerate its convergence, and improve the quality of the solutions produced. An experimental study based on a set of benchmark job-shop scheduling problems shows that the improved constraint satisfaction adaptive neural network outperforms the original constraint satisfaction adaptive neural network in terms of computational time and the quality of schedules it produces. The neural network approach is also experimentally validated to outperform three classical heuristic algorithms that are widely used as the basis of many state-of-the-art scheduling systems. Hence, it may also be used to construct advanced job-shop scheduling systems.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and in part by the National Nature Science Fundation of China under Grant 60821063 and National Basic Research Program of China under Grant 2009CB320601
Self-control is associated with health-relevant disparities in buccal DNA-methylation measures of biological aging in older adults
Self-control is a personality dimension that is associated with better physical health and a longer lifespan. Here, we examined (1) whether self-control is associated with buccal and saliva DNA-methylation (DNAm) measures of biological aging quantified in children, adolescents, and adults, and (2) whether biological aging measured in buccal DNAm is associated with self-reported health. Following preregistered analyses, we computed two DNAm measures of advanced biological age (principal-component PhenoAge and GrimAge Acceleration) and a DNAm measure of pace of aging (DunedinPACE) in buccal samples from the German Socioeconomic Panel Study (SOEP-G[ene], n = 1058, age range 0–72, Mage = 42.65) and saliva samples from the Texas Twin Project (TTP, n = 1327, age range 8–20, Mage = 13.50). We found that lower self-control was associated with advanced biological age in older adults (PhenoAge Acceleration β = − .34, [− .51, − .17], p < .001; GrimAge Acceleration β = − .34, [− .49, − .19], p < .001), but not young adults, adolescents or children. These associations remained statistically robust even after correcting for possible confounders such as socioeconomic contexts, BMI, or genetic correlates of low self-control. Moreover, a faster pace of aging and advanced biological age measured in buccal DNAm were associated with self-reported disease (PhenoAge Acceleration: β = .13 [.06, .19], p < .001; GrimAge Acceleration: β = .19 [.12, .26], p < .001; DunedinPACE: β = .09 [.02, .17], p = .01). However, effect sizes were weaker than observations in blood, suggesting that customization of DNAm aging measures to buccal and saliva tissues may be necessary. Our findings are consistent with the hypothesis that self-control is associated with health via pathways that accelerate biological aging in older adults
Spin states of the first four holes in a silicon nanowire quantum dot
We report measurements on a silicon nanowire quantum dot with a clarity that
allows for a complete understanding of the spin states of the first four holes.
First, we show control of the hole number down to one. Detailed measurements at
perpendicular magnetic fields reveal the Zeeman splitting of a single hole in
silicon. We are able to determine the ground-state spin configuration for one
to four holes occupying the quantum dot and find a spin filling with
alternating spin-down and spin-up holes, which is confirmed by
magnetospectroscopy up to 9T. Additionally, a so far inexplicable feature in
single-charge quantum dots in many materials systems is analyzed in detail. We
observe excitations of the zero-hole ground-state energy of the quantum dot,
which cannot correspond to electronic or Zeeman states. We show that the most
likely explanation is acoustic phonon emission to a cavity between the two
contacts to the nanowire.Comment: 24 pages, 8 figures, both including supporting informatio
Accurate calibration of test mass displacement in the LIGO interferometers
We describe three fundamentally different methods we have applied to
calibrate the test mass displacement actuators to search for systematic errors
in the calibration of the LIGO gravitational-wave detectors. The actuation
frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range
from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the
weighted mean coefficient over all frequencies for each technique deviates from
the average actuation coefficient for all three techniques by less than 4%.
This result indicates that systematic errors in the calibration of the
responses of the LIGO detectors to differential length variations are within
the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and
Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on
Gravitational Wave
- …