22 research outputs found

    Thermal conductivity of binary ceramic composites made of insulating and conducting materials comprising full composition range – applied to yttria partially stabilized zirconia and molybdenum disilicide

    Get PDF
    The thermal diffusivity and conductivity of dense and porous binary composites having an insulating and conducting phase were studied across its entire composition range. Experimental evaluation has been performed with MoSi2 particles embedded into yttria partially stabilized zirconia (YPSZ) as prepared by spark plasma sintering (SPS). The thermal diffusivity of the composites was measured with Flash Thermography (FT) and Laser Flash Analysis (LFA) techniques. Subsequently, the thermal conductivity was determined with the measured heat capacity and density of the composites. The actual volume fraction of the conducting phase of the composites was determined with image analysis of X-ray maps recorded with scanning electron microscopy (SEM). The phases present and their density were determined with X-ray diffractometry (XRD) using Rietveld refinement. The thermal diffusivity increases with increasing volume fraction of MoSi2. Porosity reduces the thermal diffusivity, but the effect diminishes with high volume fractions MoSi2. The thermal diffusivity as a function of the MoSi2 volume fraction of the YPSZ composites is captured by modelling, which includes the porosity effect and the high conductivity paths due to the percolation of the conductive phase

    Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti2AlC MAX Phase

    Get PDF
    MAX (M(n+1)AX(n)) phases are layered carbides or nitrides with a high thermal and mechanical bulk stability. Recently, it was shown that their surface structure can be modified to form a thin non-stoichiometric oxide layer, which can catalyze the oxidative dehydrogenation of butane. Here, the use of a Ti2AlC MAX phase as a support for cobalt oxide was explored for the dry reforming of butane with CO2, comparing this new catalyst to more traditional materials. The catalyst was active and selective to synthesis gas. Although the surface structure changed during the reaction, the activity remained stable. Under the same conditions, a titania-supported cobalt oxide catalyst gave low activity and stability due to the agglomeration of cobalt oxide particles. The Co3O4/Al(2)O(3)catalyst was active, but the acidic surface led to a faster deactivation. The less acidic surface of the Ti2AlC was better at inhibiting coke formation. Thanks to their thermal stability and acid-base properties, MAX phases are promising supports for CO(2)conversion reactions

    Influence of embedded MoSi2 particles on the high temperature thermal conductivity of SPS produced yttria-stabilised zirconia model thermal barrier coatings

    Get PDF
    To prolong the lifetime of thermal barrier coatings (TBCs) recently a new method of microcrack healing has been developed, which relies on damage initiated thermal decomposition of embedded molybdenum disilicide (MoSi2) particles within the TBC matrix. While these MoSi2 particles have a beneficial effect on the structural stability of the TBC, the high thermal conductivity of MoSi2 may have an unfavourable but as yet unquantified impact on the thermal conductivity of the TBCs. In this work the thermal conductivity of spark plasma sintering (SPS) produced yttria-stabilised zirconia (YSZ) model thermal barrier coatings containing 10 or 20 vol.% of MoSi2 healing particles was investigated using the laser flash method. Measurements were performed on free-standing composite material over a temperature range from room temperature up to 1000 °C. Microstructural analysis was carried out by SEM combined with image analysis to determine the size, distribution and area fraction of healing particles. The measurements were compared with the results from microstructure-based multi-physics finite element (FE) models and analytical models (the asymmetric Bruggeman model and the Nielsen model) in order to study the effects of the addition of MoSi2 particles as well as the presence of micro-pores on the apparent thermal conductivity. The results show a strongly non-linear increase in the thermal conductivity of the composite material with the MoSi2 volume fraction and a dependence on the aspect ratio of MoSi2 particles. Interparticle connectivity is shown to play a big role too

    Modeling Internal Oxidation of Binary Ni Alloys

    No full text

    A New Computational Approach for Modelling the Microstructural Evolution and Residual Lifetime Assessment of MCrAlY Coatings

    No full text
    MCrAlY (M = Ni, Co) coatings are commonly used to protect the underlying superalloy component in industrial gas turbines and aeroengines from oxidation attack. They also function as bond coats for thermal barrier coatings (TBC). The chemical life time of the coated component is mainly governed by the depletion of the β-phase in the bond coat as a result of simultaneously occurring surface oxidation and interdiffusion between the coating and the substrate. A new computational approach to model the microstructural evolution in MCrAlY (M = Ni, Co) coatings on Ni base superalloys was undertaken in the present study. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and wavelength dispersive X-ray spectroscopy (WDX) was employed to characterise MCrAlY coated superalloy samples after exposure at 1000 and 1100°C. Phases were identified by electron backscatter diffraction (EBSD) and correlated with SEM/EDX/WDX analyses.Modelling of the microstructural evolution was carried out considering simultaneously occurring surface oxidation and interdiffusion processes. A flux based calculation of the concentration profiles and stable phases was performed, taking into account diffusion of all elements in the γ, γ' and β-NiAl phases. Good agreement was found between the observed and computed phase distributions after specific time intervals. The computed widths of the β-depletion zones showed satisfactory agreement with the measurements. Additionally, the model was able to predict the formation of a TCP-phase and its penetration into the substrate with increasing exposure time in one of the investigated coating systems
    corecore