410 research outputs found

    Collection efficiency and design of microbial air samplers

    Get PDF
    The variables affecting the physical collection efficiency of air samplers of the type that impact microbe-carrying particles onto agar were investigated using a simplified analytical method and computational fluid dynamics. The results from these two techniques were compared, as were the effect of jet velocity, nozzle size, and nozzle distance from the agar surface; also considered was the optimisation of these variables to obtain an efficient design of sampler. A technique is described that calculates the proportion of microbe-carrying particles that a sampler will collect from a typical size distribution of microbe-carrying particles found in an occupied room; the three air samplers studied were found to collect from about 22% to over 99% of the micro-organisms in the room air

    Beam Based Alignment of Interaction Region Magnets

    Full text link
    In conventional beam based alignment (BBA) procedures, the relative alignment of a quadrupole to a nearby beam position monitor is determined by finding a beam position in the quadrupole at which the closed orbit does not change when the quadrupole field is varied. The final focus magnets of the interaction regions (IR) of circular colliders often have some specialized properties that make it difficult to perform conventional beam based alignment procedures. At the HERA interaction points, for example, these properties are: (a) The quadrupoles are quite strong and long. Therefore a thin lens approximation is quite imprecise. (b) The effects of angular magnet offsets become significant. (c) The possibilities to steer the beam are limited as long as the alignment is not within specifications. (d) The beam orbit has design offsets and design angles with respect to the axis of the low-beta quadrupoles. (e) Often quadrupoles do not have a beam position monitor in their vicinity. Here we present a beam based alignment procedure that determines the relative offset of the closed orbit from a quadrupole center without requiring large orbit changes or monitors next to the quadrupole. Taking into account the alignment angle allows us to reduce the sensitivity to optical errors by one to two orders of magnitude. We also show how the BBA measurements of all IR quadrupoles can be used to determine the global position of the magnets. The sensitivity to errors of this method is evaluated and its applicability to HERA is shown

    Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization

    Get PDF
    Thresholding is a commonly used technique in image segmentation because of its fast and easy application. For this reason threshold selection is an important issue. There are two general approaches to threshold selection. One approach is based on the histogram of the image while the other is based on the gray scale information located in the local small areas. The histogram of an image contains some statistical data of the grayscale or color ingredients. In this thesis, an adaptive logical thresholding method is proposed for the binarization of blueprint images first. The new method exploits the geometric features of blueprint images. This is implemented by utilizing a robust windows operation, which is based on the assumption that the objects have "e;C"e; shape in a small area. We make use of multiple window sizes in the windows operation. This not only reduces computation time but also separates effectively thin lines from wide lines. Our method can automatically determine the threshold of images. Experiments show that our method is effective for blueprint images and achieves good results over a wide range of images. Second, the fuzzy set theory, along with probability partition and maximum entropy theory, is explored to compute the threshold based on the histogram of the image. Fuzzy set theory has been widely used in many fields where the ambiguous phenomena exist since it was proposed by Zadeh in 1965. And many thresholding methods have also been developed by using this theory. The concept we are using here is called fuzzy partition. Fuzzy partition means that a histogram is parted into several groups by some fuzzy sets which represent the fuzzy membership of each group because our method is based on histogram of the image . Probability partition is associated with fuzzy partition. The probability distribution of each group is derived from the fuzzy partition. Entropy which originates from thermodynamic theory is introduced into communications theory as a commonly used criteria to measure the information transmitted through a channel. It is adopted by image processing as a measurement of the information contained in the processed images. Thus it is applied in our method as a criterion for selecting the optimal fuzzy sets which partition the histogram. To find the threshold, the histogram of the image is partitioned by fuzzy sets which satisfy a certain entropy restriction. The search for the best possible fuzzy sets becomes an important issue. There is no efficient method for the searching procedure. Therefore, expansion to multiple level thresholding with fuzzy partition becomes extremely time consuming or even impossible. In this thesis, the relationship between a probability partition (PP) and a fuzzy C-partition (FP) is studied. This relationship and the entropy approach are used to derive a thresholding technique to select the optimal fuzzy C-partition. The measure of the selection quality is the entropy function defined by the PP and FP. A necessary condition of the entropy function arriving at a maximum is derived. Based on this condition, an efficient search procedure for two-level thresholding is derived, which makes the search so efficient that extension to multilevel thresholding becomes possible. A novel fuzzy membership function is proposed in three-level thresholding which produces a better result because a new relationship among the fuzzy membership functions is presented. This new relationship gives more flexibility in the search for the optimal fuzzy sets, although it also increases the complication in the search for the fuzzy sets in multi-level thresholding. This complication is solved by a new method called the "e;Onion-Peeling"e; method. Because the relationship between the fuzzy membership functions is so complicated it is impossible to obtain the membership functions all at once. The search procedure is decomposed into several layers of three-level partitions except for the last layer which may be a two-level one. So the big problem is simplified to three-level partitions such that we can obtain the two outmost membership functions without worrying too much about the complicated intersections among the membership functions. The method is further revised for images with a dominant area of background or an object which affects the appearance of the histogram of the image. The histogram is the basis of our method as well as of many other methods. A "e;bad"e; shape of the histogram will result in a bad thresholded image. A quadtree scheme is adopted to decompose the image into homogeneous areas and heterogeneous areas. And a multi-resolution thresholding method based on quadtree and fuzzy partition is then devised to deal with these images. Extension of fuzzy partition methods to color images is also examined. An adaptive thresholding method for color images based on fuzzy partition is proposed which can determine the number of thresholding levels automatically. This thesis concludes that the "e;C"e; shape assumption and varying sizes of windows for windows operation contribute to a better segmentation of the blueprint images. The efficient search procedure for the optimal fuzzy sets in the fuzzy-2 partition of the histogram of the image accelerates the process so much that it enables the extension of it to multilevel thresholding. In three-level fuzzy partition the new relationship presentation among the three fuzzy membership functions makes more sense than the conventional assumption and, as a result, performs better. A novel method, the "e;Onion-Peeling"e; method, is devised for dealing with the complexity at the intersection among the multiple membership functions in the multilevel fuzzy partition. It decomposes the multilevel partition into the fuzzy-3 partitions and the fuzzy-2 partitions by transposing the partition space in the histogram. Thus it is efficient in multilevel thresholding. A multi-resolution method which applies the quadtree scheme to distinguish the heterogeneous areas from the homogeneous areas is designed for the images with large homogeneous areas which usually distorts the histogram of the image. The new histogram based on only the heterogeneous area is adopted for partition and outperforms the old one. While validity checks filter out the fragmented points which are only a small portion of the whole image. Thus it gives good thresholded images for human face images

    Work Plans of the EUROTeV Technical Work Packages for 2005-2007

    Get PDF
    This report summarises the status of the work in the seven scientific Work Packages of EUROTeV as presented during the ILC-European Regional Meeting at Royal Holloway in June 2005. The purpose of the meeting was to monitor the progress and to contrast the developments inside EUROTeV with the worldwide developments of the GDE. The presentations of the entire meeting are available from http://www.pp.rhul.ac.uk/workshop/

    Spectropolarimetry of life: airborne measurements from a hot air balloon

    Full text link
    Does life exist outside our Solar System? A first step towards searching for life outside our Solar System is detecting life on Earth by using remote sensing applications. One powerful and unambiguous biosignature is the circular polarization resulting from the homochirality of biotic molecules and systems. We aim to investigate the possibility of identifying and characterizing life on Earth by using airborne spectropolarimetric observations from a hot air balloon during our field campaign in Switzerland, May 2022. In this work we present the optical-setup and the data obtained from aerial circular spectropolarimetric measurements of farmland, forests, lakes and urban sites. We make use of the well-calibrated FlyPol instrument that measures the fractionally induced circular polarization (V/IV/I) of (reflected) light with a sensitivity of <10−4<10^{-4}. The instrument operates in the visible spectrum, ranging from 400 to 900 nm. We demonstrate the possibility to distinguish biotic from abiotic features using circular polarization spectra and additional broadband linear polarization information. We review the performance of our optical-setup and discuss potential improvements. This sets the requirements on how to perform future airborne spectropolarimetric measurements of the Earth's surface features from several elevations.Comment: 13 pages, 10 figures, to be submitted in SPIE Proceedings 12214-

    Biosignatures of the Earth

    Get PDF
    ontext. Homochirality is a generic and unique property of life on Earth and is considered a universal and agnostic biosignature. Homochirality induces fractional circular polarization in the incident light that it reflects. Because this circularly polarized light can be sensed remotely, it can be one of the most compelling candidate biosignatures in life detection missions. While there are also other sources of circular polarization, these result in spectrally flat signals with lower magnitude. Additionally, circular polarization can be a valuable tool in Earth remote sensing because the circular polarization signal directly relates to vegetation physiology. Aims. While high-quality circular polarization measurements can be obtained in the laboratory and under semi-static conditions in the field, there has been a significant gap to more realistic remote sensing conditions. Methods. In this study, we present sensitive circular spectropolarimetric measurements of various landscape elements taken from a fast-moving helicopter. Results. We demonstrate that during flight, within mere seconds of measurements, we can differentiate (S∕N > 5) between grass fields, forests, and abiotic urban areas. Importantly, we show that with only nonzero circular polarization as a discriminant, photosynthetic organisms can even be measured in lakes. Conclusions. Circular spectropolarimetry can be a powerful technique to detect life beyond Earth, and we emphasize the potential of utilizing circular spectropolarimetry as a remote sensing tool to characterize and monitor in detail the vegetation physiology and terrain features of Earth itself
    • …
    corecore