2,617 research outputs found

    [Review of] Karl H. Schlesier. The Wolves of Heaven: Cheyenne Shamanism, Ceremonies, and Prehistoric Origins

    Get PDF
    Schlesier has a necessary footnote advisory to readers explaining the way in which he has structured The Wolves of Heaven. In the advisory Schelesier [Schlesier] writes that the book is a slow read on purpose so as to develop the story of how it was that the Tsistsistas (Cheyenne), came out of the boreal forest to become hunters of the northern plains, evolving eventually into the 19th century Tsistsistas bison hunting horse nomads

    Exciton Trapping Is Responsible for the Long Apparent Lifetime in Acid-Treated MoS2

    Full text link
    Here, we show that deep trapped "dark" exciton states are responsible for the surprisingly long lifetime of band-edge photoluminescence in acid-treated single-layer MoS2. Temperature-dependent transient photoluminescence spectroscopy reveals an exponential tail of long-lived states extending hundreds of meV into the band gap. These sub-band states, which are characterized by a 4 microsecond radiative lifetime, quickly capture and store photogenerated excitons before subsequent thermalization up to the band edge where fast radiative recombination occurs. By intentionally saturating these trap states, we are able to measure the "true" 150 ps radiative lifetime of the band-edge exciton at 77 K, which extrapolates to ~600 ps at room temperature. These experiments reveal the dominant role of dark exciton states in acid-treated MoS2, and suggest that excitons spend > 95% of their lifetime at room temperature in trap states below the band edge. We hypothesize that these states are associated with native structural defects, which are not introduced by the superacid treatment; rather, the superacid treatment dramatically reduces non-radiative recombination through these states, extending the exciton lifetime and increasing the likelihood of eventual radiative recombination

    Can disorder enhance incoherent exciton diffusion?

    Get PDF
    Recent experiments aimed at probing the dynamics of excitons have revealed that semiconducting films composed of disordered molecular subunits, unlike expectations for their perfectly ordered counterparts, can exhibit a time-dependent diffusivity in which the effective early time diffusion constant is larger than that of the steady state. This observation has led to speculation about what role, if any, microscopic disorder may play in enhancing exciton transport properties. In this article, we present the results of a model study aimed at addressing this point. Specifically, we present a general model, based upon F\"orster theory, for incoherent exciton diffusion in a material composed of independent molecular subunits with static energetic disorder. Energetic disorder leads to heterogeneity in molecule-to-molecule transition rates which we demonstrate has two important consequences related to exciton transport. First, the distribution of local site-specific diffusivity is broadened in a manner that results in a decrease in average exciton diffusivity relative to that in a perfectly ordered film. Second, since excitons prefer to make transitions that are downhill in energy, the steady state distribution of exciton energies is biased towards low energy molecular subunits, those that exhibit reduced diffusivity relative to a perfectly ordered film. These effects combine to reduce the net diffusivity in a manner that is time dependent and grows more pronounced as disorder is increased. Notably, however, we demonstrate that the presence of energetic disorder can give rise to a population of molecular subunits with exciton transfer rates exceeding that of subunits in an energetically uniform material. Such enhancements may play an important role in processes that are sensitive to molecular-scale fluctuations in exciton density field.Comment: 15 pages, 3 figure

    Nonequilibrium dynamics of localized and delocalized excitons in colloidal quantum dot solids

    Full text link
    Self-assembled quantum dot (QD) solids are a highly tunable class of materials with a wide range of applications in solid-state electronics and optoelectronic devices. In this perspective, we highlight how the presence of microscopic disorder in these materials can influence their macroscopic optoelectronic properties. Specifically, we consider the dynamics of excitons in energetically disordered QD solids using a theoretical model framework for both localized and delocalized excitonic regimes. In both cases, we emphasize the tendency of energetic disorder to promote nonequilibrium relaxation dynamics and discuss how the signatures of these nonequilibrium effects manifest in time-dependent spectral measurements. Moreover, we describe the connection between the microscopic dynamics of excitons within the material and the measurement of material specific parameters, such as emission linewidth broadening and energetic dissipation rate.Comment: 4 figure

    Geological mapping of an area along the Frisco Railroad between Cuba and Saint James

    Get PDF
    The chief object of the work has been the location of the Roubidoux-Jefferson City contact, if it occurred within a mile of the railroad. Distances and positions along the track were obtained by the use of a map and by counting telephone poles. Other locations were made by obtaining their bearing and distance from these points by the use of a compass and by pacing. Elevations were carried by aneroid barometers, using the railroad elevations at mile points as bench marks. An attempt has been made to locate all important outcrops; but these are shown only on the field map. Extreme accuracy has not been attempted; however, the chief drainage courses have been fairly accurately located, and the contours give a fair idea of the topography and elevations --Introduction, Methods of Field Work, page 1

    Attendance Feedback In An Academic Setting: Preliminary Results

    Get PDF
    In the fall of 2005, the attendance behavior of 118 business students at Northern State University (NSU) was monitored in 4 classes. After 10 weeks of classes Absenteeism Feedback was given to these students. Examination of the data indicated a strong correlation between attendance and subsequent course grade

    Calibrating field sprayers (1997)

    Get PDF
    Pesticides are most cost-effective and perform optimally when applied at labeled rates. Too much pesticide can injure crops; too little can give inadequate or unreliable control. Careful calibration is essential to proper sprayer operation, and the economic return on the small investment of time required can be substantial

    Effects of intra- and inter-laminar resin content on the mechanical properties of toughened composite materials

    Get PDF
    Composite materials having multiphase toughened matrix systems and laminate architectures characterized by resin-rich interlaminar layers (RIL) have been the subject of much recent attention. Such materials are likely to find applications in thick compressively loaded structures such as the keel area of commercial aircraft fuselages. The effects of resin content and its interlaminar and intralaminar distribution on mechanical properties were investigated with test and analysis of two carbon-epoxy systems. The RIL was found to reduce the in situ strengthening effect for matrix cracking in laminates. Mode 2 fracture toughness was found to increase with increasing RIL thickness over the range investigated, and Mode 1 interlaminar toughness was negligibly affected. Compressive failure strains were found to increase with increasing resin content for specimens having no damage, holes, and impact damage. Analytical tools for predicting matrix cracking of off-axis plies and damage tolerance in compression after impact (CAI) were successfully applied to materials with RIL
    • …
    corecore