Self-assembled quantum dot (QD) solids are a highly tunable class of
materials with a wide range of applications in solid-state electronics and
optoelectronic devices. In this perspective, we highlight how the presence of
microscopic disorder in these materials can influence their macroscopic
optoelectronic properties. Specifically, we consider the dynamics of excitons
in energetically disordered QD solids using a theoretical model framework for
both localized and delocalized excitonic regimes. In both cases, we emphasize
the tendency of energetic disorder to promote nonequilibrium relaxation
dynamics and discuss how the signatures of these nonequilibrium effects
manifest in time-dependent spectral measurements. Moreover, we describe the
connection between the microscopic dynamics of excitons within the material and
the measurement of material specific parameters, such as emission linewidth
broadening and energetic dissipation rate.Comment: 4 figure