4,684 research outputs found

    K-Chameleon and the Coincidence Problem

    Full text link
    In this paper we present a hybrid model of k-essence and chameleon, named as k-chameleon. In this model, due to the chameleon mechanism, the directly strong coupling between the k-chameleon field and matters (cold dark matters and baryons) is allowed. In the radiation dominated epoch, the interaction between the k-chameleon field and background matters can be neglected, the behavior of the k-chameleon therefore is the same as that of the ordinary k-essence. After the onset of matter domination, the strong coupling between the k-chameleon and matters dramatically changes the result of the ordinary k-essence. We find that during the matter-dominated epoch, only two kinds of attractors may exist: one is the familiar {\bf K} attractor and the other is a completely {\em new}, dubbed {\bf C} attractor. Once the universe is attracted into the {\bf C} attractor, the fraction energy densities of the k-chameleon Ωϕ\Omega_{\phi} and dust matter Ωm\Omega_m are fixed and comparable, and the universe will undergo a power-law accelerated expansion. One can adjust the model so that the {\bf K} attractor do not appear. Thus, the k-chameleon model provides a natural solution to the cosmological coincidence problem.Comment: Revtex, 17 pages; v2: 18 pages, two figures, more comments and references added, to appear in PRD, v3: published versio

    Constraining f(R) Gravity as a Scalar Tensor Theory

    Get PDF
    We search for viable f(R) theories of gravity, making use of the equivalence between such theories and scalar-tensor gravity. We find that models can be made consistent with solar system constraints either by giving the scalar a high mass or by exploiting the so-called chameleon effect. However, in both cases, it appears likely that any late-time cosmic acceleration will be observationally indistinguishable from acceleration caused by a cosmological constant. We also explore further observational constraints from, e.g., big bang nucleosynthesis and inflation.Comment: 15 pages, 5 figure

    A new test of conservation laws and Lorentz invariance in relativistic gravity

    Full text link
    General relativity predicts that energy and momentum conservation laws hold and that preferred frames do not exist. The parametrised post-Newtonian formalism (PPN) phenomenologically quantifies possible deviations from general relativity. The PPN parameter alpha_3 (which identically vanishes in general relativity) plays a dual role in that it is associated both with a violation of the momentum conservation law, and with the existence of a preferred frame. By considering the effects of alpha_3 neq 0 in certain binary pulsar systems, it is shown that alpha_3 < 2.2 x 10^-20 (90% CL). This limit improves on previous results by several orders of magnitude, and shows that pulsar tests of alpha_3 rank (together with Hughes-Drever-type tests of local Lorentz invariance) among the most precise null experiments of physics.Comment: Submitted to Classical Quantum Gravity, LaTeX, requires ioplppt.sty, no figure

    Testing General Relativity with Current Cosmological Data

    Full text link
    Deviations from general relativity, such as could be responsible for the cosmic acceleration, would influence the growth of large scale structure and the deflection of light by that structure. We clarify the relations between several different model independent approaches to deviations from general relativity appearing in the literature, devising a translation table. We examine current constraints on such deviations, using weak gravitational lensing data of the CFHTLS and COSMOS surveys, cosmic microwave background radiation data of WMAP5, and supernova distance data of Union2. Markov Chain Monte Carlo likelihood analysis of the parameters over various redshift ranges yields consistency with general relativity at the 95% confidence level.Comment: 11 pages; 7 figures; typographical errors corrected; this is the published versio

    The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit

    Full text link
    Gravitomagnetism--a motional coupling of matter analogous to the Lorentz force in electromagnetism--has observable consequences for any scenario involving differing mass currents. Examples include gyroscopes located near a rotating massive body, and the interaction of two orbiting bodies. In the former case, the resulting precession of the gyroscope is often called ``frame dragging,'' and is the principal measurement sought by the Gravity Probe-B experiment. The latter case is realized in the earth-moon system, and the effect has in fact been confirmed via lunar laser ranging (LLR) to approximately 0.1% accuracy--better than the anticipated accuracy of the Gravity-Probe-B result. This paper shows the connnection between these seemingly disparate phenomena by employing the same gravitomagnetic term in the equation of motion to obtain both gyroscopic precession and modification of the lunar orbit. Since lunar ranging currently provides a part in a thousand fit to the gravitomagnetic contributions to the lunar orbit, this feature of post-Newtonian gravity is not adjustable to fit any anomalous result beyond the 0.1% level from Gravity Probe-B without disturbing the existing fit of theory to the 36 years of LLR data.Comment: 4 pages; accepted for publication in Physical Review Letter

    Detecting a Lorentz-Violating Field in Cosmology

    Full text link
    We consider cosmology in the Einstein-aether theory (the generally covariant theory of gravitation coupled to a dynamical timelike Lorentz-violating vector field) with a linear aether-Lagrangian. The 3+1 spacetime splitting approach is used to derive covariant and gauge invariant perturbation equations which are valid for a general class of Lagrangians. Restricting attention to the parameter space of these theories which is consistent with local gravity experiments, we show that there are tracking behaviors for the aether field, both in the background cosmology and at linear perturbation level. The primordial power-spectrum of scalar perturbations in this model is shown to be the same that predicted by standard general relativity. However, the power-spectrum of tensor perturbation is different from that in general relativity, but has a smaller amplitude and so cannot be detected at present. We also study the implications for late-time cosmology and find that the evolution of photon and neutrino anisotropic stresses can source the aether field perturbation during the radiation and matter dominated epochs, and as a result the CMB and matter power spectra are modified. However these effects are degenerate with respect to other cosmological parameters, such as neutrino masses and the bias parameter in the observed galaxy spectrum.Comment: 13 pages, 3 figures; modified version to appear in Physical Review

    Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects

    Full text link
    The inverse square law of gravity is poorly probed by experimental tests at distances of ~ 10 AUs. Recent analysis of the trajectory of the Pioneer 10 and 11 spacecraft have shown an unmodeled acceleration directed toward the Sun which was not explained by any obvious spacecraft systematics, and occurred when at distances greater than 20 AUs from the Sun. If this acceleration represents a departure from Newtonian gravity or is indicative of an additional mass distribution in the outer solar system, it should be detectable in the orbits of Trans-Neptunian Objects (TNOs). To place limits on deviations from Newtonian gravity, we have selected a well observed sample of TNOs found orbiting between 20 and 100 AU from the Sun. By examining their orbits with modified orbital fitting software, we place tight limits on the perturbations of gravity that could exist in this region of the solar system.Comment: 20 pages, 4 figures, 2 tables, uses AASTex v5.x macro

    Translational Invariance and the Anisotropy of the Cosmic Microwave Background

    Get PDF
    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients.Comment: Notation improve

    Extended coherence time on the clock transition of optically trapped Rubidium

    Get PDF
    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories, but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of Rb-87 by applying the recently discovered spin self-rephasing. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4E-11 x tau^(-1/2), where tau is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.Comment: 5 pages, 4 figure

    Don\u27t Send The Little Ones Crying To Bed

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1328/thumbnail.jp
    corecore