284 research outputs found

    Static wormholes on the brane inspired by Kaluza-Klein gravity

    Full text link
    We use static solutions of 5-dimensional Kaluza-Klein gravity to generate several classes of static, spherically symmetric spacetimes which are analytic solutions to the equation (4)R=0^{(4)}R = 0, where (4)R^{(4)}R is the four-dimensional Ricci scalar. In the Randall & Sundrum scenario they can be interpreted as vacuum solutions on the brane. The solutions contain the Schwarzschild black hole, and generate new families of traversable Lorenzian wormholes as well as nakedly singular spacetimes. They generalize a number of previously known solutions in the literature, e.g., the temporal and spatial Schwarzschild solutions of braneworld theory as well as the class of self-dual Lorenzian wormholes. A major departure of our solutions from Lorenzian wormholes {\it a la} Morris and Thorne is that, for certain values of the parameters of the solutions, they contain three spherical surfaces (instead of one) which are extremal and have finite area. Two of them have the same size, meet the "flare-out" requirements, and show the typical violation of the energy conditions that characterizes a wormhole throat. The other extremal sphere is "flaring-in" in the sense that its sectional area is a local maximum and the weak, null and dominant energy conditions are satisfied in its neighborhood. After bouncing back at this second surface a traveler crosses into another space which is the double of the one she/he started in. Another interesting feature is that the size of the throat can be less than the Schwarzschild radius 2M2 M, which no longer defines the horizon, i.e., to a distant observer a particle or light falling down crosses the Schwarzschild radius in a finite time

    Scalar GW detection with a hollow spherical antenna

    Get PDF
    We study the response and cross sections for the absorption of GW energy in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere.Comment: latex file, 9 page

    The detection of Gravitational Waves

    Get PDF
    This chapter is concerned with the question: how do gravitational waves (GWs) interact with their detectors? It is intended to be a theory review of the fundamental concepts involved in interferometric and acoustic (Weber bar) GW antennas. In particular, the type of signal the GW deposits in the detector in each case will be assessed, as well as its intensity and deconvolution. Brief reference will also be made to detector sensitivity characterisation, including very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For Proceedings of the ERE-2001 Conference (Madrid, September 2001

    How to reach a few percent level in determining the Lense-Thirring effect?

    Full text link
    In this paper we discuss and compare a node-only LAGEOS-LAGEOS II combination and a node-only LAGEOS-LAGEOS II-Ajisai-Jason1 combination for the determination of the Lense-Thirring effect. The new combined EIGEN-CG01C Earth gravity model has been adopted. The second combination cancels the first three even zonal harmonics along with their secular variations but introduces the non-gravitational perturbations of Jason1. The first combination is less sensitive to the non-conservative forces but is sensitive to the secular variations of the uncancelled even zonal harmonics of low degree J4 and J6 whose impact grows linearly in time.Comment: Latex2e, 22 pag. 1 table, 2 figures, 45 references. Changes in the Abstract, Introduction and Conclusions. Discussion on the non-gravitational perturbations on Ajisai and on the impact of the secular rates of the even zonal harmonics added. EIGEN-CG01C CHAMP+GRACE+terrestrial gravimetry/altimetry Earth gravity model used. Reference adde

    General Relativity as an Attractor in Scalar-Tensor Stochastic Inflation

    Full text link
    Quantum fluctuations of scalar fields during inflation could determine the very large-scale structure of the universe. In the case of general scalar-tensor gravity theories these fluctuations lead to the diffusion of fundamental constants like the Planck mass and the effective Brans--Dicke parameter, ω\omega. In the particular case of Brans--Dicke gravity, where ω\omega is constant, this leads to runaway solutions with infinitely large values of the Planck mass. However, in a theory with variable ω\omega we find stationary probability distributions with a finite value of the Planck mass peaked at exponentially large values of ω\omega after inflation. We conclude that general relativity is an attractor during the quantum diffusion of the fields.Comment: LaTeX (with RevTex) 11 pages, 2 uuencoded figures appended, also available on WWW via http://star.maps.susx.ac.uk/index.htm

    Value-based decision-making of cigarette and nondrug rewards in dependent and occasional cigarette smokers:An FMRI study

    Get PDF
    Little is known about the neural functioning that underpins drug valuation and choice in addiction, including nicotine dependence. Following ad libitum smoking, 19 dependent smokers (smoked≄10/day) and 19 occasional smokers (smoked 0.5‐5/week) completed a decision‐making task. First, participants stated how much they were willing‐to‐pay for various amounts of cigarettes and shop vouchers. Second, during functional magnetic resonance imaging, participants decided if they wanted to buy these cigarettes and vouchers for a set amount of money. We examined decision‐making behaviour and brain activity when faced with cigarette and voucher decisions, purchasing (vs not purchasing) cigarettes and vouchers, and “value signals” where brain activity correlated with cigarette and voucher value. Dependent smokers had a higher willingness‐to‐pay for cigarettes and greater activity in the bilateral middle temporal gyrus when faced with cigarette decisions than occasional smokers. Across both groups, the decision to buy cigarettes was associated with activity in the left paracingulate gyrus, right nucleus accumbens, and left amygdala. The decision to buy vouchers was associated with activity in the left superior frontal gyrus, but dependent smokers showed weaker activity in the left posterior cingulate gyrus than occasional smokers. Across both groups, cigarette value signals were observed in the left striatum and ventromedial prefrontal cortex. To summarise, nicotine dependence was associated with greater behavioural valuation of cigarettes and brain activity during cigarette decisions. When purchasing cigarettes and vouchers, reward and decision‐related brain regions were activated in both groups. For the first time, we identified value signals for cigarettes in the brain

    Bumpy black holes from spontaneous Lorentz violation

    Full text link
    We consider black holes in Lorentz violating theories of massive gravity. We argue that in these theories black hole solutions are no longer universal and exhibit a large number of hairs. If they exist, these hairs probe the singularity inside the black hole providing a window into quantum gravity. The existence of these hairs can be tested by future gravitational wave observatories. We generically expect that the effects we discuss will be larger for the more massive black holes. In the simplest models the strength of the hairs is controlled by the same parameter that sets the mass of the graviton (tensor modes). Then the upper limit on this mass coming from the inferred gravitational radiation emitted by binary pulsars implies that hairs are likely to be suppressed for almost the entire mass range of the super-massive black holes in the centers of galaxies.Comment: 40 pages, 4 figure

    Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics

    Full text link
    In this work we outline the two most commonly used test theories (RMS and SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop the general framework of applying these test theories to resonator experiments with an emphasis on rotating experiments in the laboratory. We compare the inherent sensitivity factors of common experiments and propose some new configurations. Finally we apply the test theories to the rotating cryogenic experiment at the University of Western Australia, which recently set new limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications, updated list of reference

    Tensor-scalar gravity and binary-pulsar experiments

    Get PDF
    Some recently discovered nonperturbative strong-field effects in tensor-scalar theories of gravitation are interpreted as a scalar analog of ferromagnetism: "spontaneous scalarization". This phenomenon leads to very significant deviations from general relativity in conditions involving strong gravitational fields, notably binary-pulsar experiments. Contrary to solar-system experiments, these deviations do not necessarily vanish when the weak-field scalar coupling tends to zero. We compute the scalar "form factors" measuring these deviations, and notably a parameter entering the pulsar timing observable gamma through scalar-field-induced variations of the inertia moment of the pulsar. An exploratory investigation of the confrontation between tensor-scalar theories and binary-pulsar experiments shows that nonperturbative scalar field effects are already very tightly constrained by published data on three binary-pulsar systems. We contrast the probing power of pulsar experiments with that of solar-system ones by plotting the regions they exclude in a generic two-dimensional plane of tensor-scalar theories.Comment: 35 pages, REVTeX 3.0, uses epsf.tex to include 9 Postscript figure

    STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC INFLATIONARY COSMOLOGY

    Get PDF
    In Brans-Dicke theory the Universe becomes divided after inflation into many exponentially large domains with different values of the effective gravitational constant. Such a process can be described by diffusion equations for the probability of finding a certain value of the inflaton and dilaton fields in a physical volume of the Universe. For a typical chaotic inflation potential, the solutions for the probability distribution never become stationary but grow forever towards larger values of the fields. We show here that a non-minimal conformal coupling of the inflaton to the curvature scalar, as well as radiative corrections to the effective potential, may provide a dynamical cutoff and generate stationary solutions. We also analyze the possibility of large nonperturbative jumps of the fluctuating inflaton scalar field, which was recently revealed in the context of the Einstein theory. We find that in the Brans--Dicke theory the amplitude of such jumps is strongly suppressed.Comment: 19 pages, LaTe
    • 

    corecore