27,936 research outputs found

    Absorption of Energy at a Metallic Surface due to a Normal Electric Field

    Full text link
    The effect of an oscillating electric field normal to a metallic surface may be described by an effective potential. This induced potential is calculated using semiclassical variants of the random phase approximation (RPA). Results are obtained for both ballistic and diffusive electron motion, and for two and three dimensional systems. The potential induced within the surface causes absorption of energy. The results are applied to the absorption of radiation by small metal spheres and discs. They improve upon an earlier treatment which used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript

    Ergodic and non-ergodic clustering of inertial particles

    Full text link
    We compute the fractal dimension of clusters of inertial particles in mixing flows at finite values of Kubo (Ku) and Stokes (St) numbers, by a new series expansion in Ku. At small St, the theory includes clustering by Maxey's non-ergodic 'centrifuge' effect. In the limit of St to infinity and Ku to zero (so that Ku^2 St remains finite) it explains clustering in terms of ergodic 'multiplicative amplification'. In this limit, the theory is consistent with the asymptotic perturbation series in [Duncan et al., Phys. Rev. Lett. 95 (2005) 240602]. The new theory allows to analyse how the two clustering mechanisms compete at finite values of St and Ku. For particles suspended in two-dimensional random Gaussian incompressible flows, the theory yields excellent results for Ku < 0.2 for arbitrary values of St; the ergodic mechanism is found to contribute significantly unless St is very small. For higher values of Ku the new series is likely to require resummation. But numerical simulations show that for Ku ~ St ~ 1 too, ergodic 'multiplicative amplification' makes a substantial contribution to the observed clustering.Comment: 4 pages, 2 figure

    The effect of stellar-mass black holes on the structural evolution of massive star clusters

    Full text link
    We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant number of black holes are retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass segregated cluster.Comment: Accepted for publication in MNRAS Letters; 2 figures, 1 tabl

    Magnetic Dipole Absorption of Radiation in Small Conducting Particles

    Full text link
    We give a theoretical treatment of magnetic dipole absorption of electromagnetic radiation in small conducting particles, at photon energies which are large compared to the single particle level spacing, and small compared to the plasma frequency. We discuss both diffusive and ballistic electron dynamics for particles of arbitrary shape. The conductivity becomes non-local when the frequency is smaller than the frequency \omega_c characterising the transit of electrons from one side of the particle to the other, but in the diffusive case \omega_c plays no role in determining the absorption coefficient. In the ballistic case, the absorption coefficient is proportional to \omega^2 for \omega << \omega_c, but is a decreasing function of \omega for \omega >> \omega_c.Comment: 25 pages of plain TeX, 2 postscipt figure

    Brownian Motion Model of Quantization Ambiguity and Universality in Chaotic Systems

    Full text link
    We examine spectral equilibration of quantum chaotic spectra to universal statistics, in the context of the Brownian motion model. Two competing time scales, proportional and inversely proportional to the classical relaxation time, jointly govern the equilibration process. Multiplicity of quantum systems having the same semiclassical limit is not sufficient to obtain equilibration of any spectral modes in two-dimensional systems, while in three-dimensional systems equilibration for some spectral modes is possible if the classical relaxation rate is slow. Connections are made with upper bounds on semiclassical accuracy and with fidelity decay in the presence of a weak perturbation.Comment: 13 pages, 6 figures, submitted to Phys Rev

    BARTER:promoting local spending behavior

    Get PDF
    In the wake of the 2008 economic collapse, there is renewed interest in strategies for ensuring the future economic success of nations in a globalized marketplace. One of the main ideas being championed by governments is to promote growth by encouraging local spending, although it is not clear how to motivate this behavioral shift. Local currency initiatives are increasingly popular, though due to certain practicalities are rarely successful in fostering long term and widespread change in spending behaviors. We report on the development of a persuasive system (BARTER) that leverages mobile and ubiquitous technology to overcome some of the limitations of local currencies, while also providing users with the insight needed to determine for themselves how local spending may benet their community

    Perturbation theory for a stochastic process with Ornstein-Uhlenbeck noise

    Full text link
    The Ornstein-Uhlenbeck process may be used to generate a noise signal with a finite correlation time. If a one-dimensional stochastic process is driven by such a noise source, it may be analysed by solving a Fokker-Planck equation in two dimensions. In the case of motion in the vicinity of an attractive fixed point, it is shown how the solution of this equation can be developed as a power series. The coefficients are determined exactly by using algebraic properties of a system of annihilation and creation operators.Comment: 7 pages, 0 figure

    Collective versus single-particle effects in the optical spectra of finite electronic quantum systems

    Full text link
    We study optical spectra of finite electronic quantum systems at frequencies smaller than the plasma frequency using a quasi-classical approach. This approach includes collective effects and enables us to analyze how the nature of the (single-particle) electron dynamics influences the optical spectra in finite electronic quantum systems. We derive an analytical expression for the low-frequency absorption coefficient of electro-magnetic radiation in a finite quantum system with ballistic electron dynamics and specular reflection at the boundaries: a two-dimensional electron gas confined to a strip of width a (the approach can be applied to systems of any shape and electron dynamics -- diffusive or ballistic, regular or irregular motion). By comparing with results of numerical computations using the random-phase approximation we show that our analytical approach provides a qualitative and quantitative understanding of the optical spectrum.Comment: 4 pages, 3 figure
    • …
    corecore