269 research outputs found

    The Receptor-Like Kinase SERK3/BAK1 Is Required for Basal Resistance against the Late Blight Pathogen Phytophthora infestans in Nicotiana benthamiana

    Get PDF
    BACKGROUND The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae), such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs), contributes to P. infestans resistance. PRINCIPAL FINDINGS We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction) to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI) in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs. CONCLUSIONS/SIGNIFICANCE We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.This work was supported by the Gatsby Charitable Foundation, BBSRC, Nuffield Foundation and the German Research Foundation (DFG). SS was supported by a personal research fellowship (SCHO1347/1-1). JPR is an Australian Research Council Future Fellow (FT0992129). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Characterisation of thiamine diphosphate-dependent 4-hydroxybenzoylformate decarboxylase enzymes from Rhodococcus jostii RHA1 and Pseudomonas fluorescens Pf-5 involved in degradation of aryl-C2 lignin degradation fragments

    Get PDF
    A thiamine diphosphate-dependent enzyme annotated as a benzoylformate decarboxylase is encoded in gene cluster ro02984-ro02986 in Rhodococcus jostii RHA1 previously shown to generate vanillin and 4-hydroxybenzaldehyde from lignin oxidation, and a closely related gene cluster is also found in the genome of Pseudomonas fluorescens Pf-5. Two hypotheses for possible pathways involving a thiamine diphosphate-dependent cleavage, either C-C cleavage of a ketol or diketone aryl C3 substrate, or decarboxylation of an aryl C2 substrate, were investigated by expression and purification of the recombinant enzymes, and expression of dehydrogenase and oxidase enzymes also found in the gene clusters. The ThDP-dependent enzymes showed no activity for cleavage of aryl C3 ketol or diketone substrates, but showed activity for decarboxylation of benzoylformate and 4-hydroxybenzoylformate. A flavin-dependent oxidase encoded by gene ro02984 was found to oxidise either mandelic acid or phenylglyoxal. The crystal structure of the P. fluorescens decarboxylase enzyme was determined at 1.69 Å resolution, showing similarity to known benzoylformate decarboxylase enzymes. The P. fluorescens decarboxylase enzyme showed enhanced carboligase activity between vanillin and acetaldehyde, rationalised by the presence of alanine vs serine at residue 73 in the enzyme active site, which was investigated further by site-directed mutagenesis of this residue. A hypothesis for a pathway for degradation of aryl-C2 fragments arising from oxidative cleavage of phenylcoumaran and diarylpropane structures in lignin is proposed

    Sphingobacterium sp. T2 manganese superoxide dismutase catalyses the oxidative demethylation of polymeric lignin via generation of hydroxyl radical

    Get PDF
    Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-ÎČ-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation

    Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate

    Get PDF
    The identification of enzymes responsible for oxidation of lignin in lignin‐degrading bacteria is of interest for biotechnological valorization of lignin to renewable chemical products. The genome sequences of two lignin‐degrading bacteria, Ochrobactrum sp., and Paenibacillus sp., contain no B‐type DyP peroxidases implicated in lignin degradation in other bacteria, but contain putative multicopper oxidase genes. Multi‐copper oxidase CueO from Ochrobactrum sp. was expressed and reconstituted as a recombinant laccase‐like enzyme, and kinetically characterized. Ochrobactrum CueO shows activity for oxidation of ÎČ‐aryl ether and biphenyl lignin dimer model compounds, generating oxidized dimeric products, and shows activity for oxidation of Ca‐lignosulfonate, generating vanillic acid as a low molecular weight product. The crystal structure of Ochrobactrum CueO (OcCueO) has been determined at 1.1 Å resolution (PDB: 6EVG), showing a four‐coordinate mononuclear type I copper center with ligands His495, His434 and Cys490 with Met500 as an axial ligand, similar to that of Escherichia coli CueO and bacterial azurin proteins, whereas fungal laccase enzymes contain a three‐coordinate type I copper metal center. A trinuclear type 2/3 copper cluster was modeled into the active site, showing similar structure to E. coli CueO and fungal laccases, and three solvent channels leading to the active site. Site‐directed mutagenesis was carried out on amino acid residues found in the solvent channels, indicating the importance for residues Asp102, Gly103, Arg221, Arg223, and Asp462 for catalytic activity. The work identifies a new bacterial multicopper enzyme with activity for lignin oxidation, and implicates a role for bacterial laccase‐like multicopper oxidases in some lignin‐degrading bacteria

    Extracellular alpha/beta-hydrolase from Paenibacillus species shares structural and functional homology to tobacco salicylic acid binding protein 2

    Get PDF
    An alpha/ beta hydrolase annotated as a putative salicylate esterase within the genome of a species of Paenibacillus previously identified from differential and selective growth on Kraft lignin was structurally and functionally characterised. Feruloyl esterases are key to the degradation of lignin in several bacterial species and although this activity was investigated, no such activity was observed. The crystal structure of the Paenibacillus esterase, here denoted as PnbE, was determined at 1.32 Å resolution, showing high similarity to Nicotiana tabacum salicylic acid binding protein 2 from the protein database. Structural similarities between these two structures across the core domains and key catalytic residues were observed, with superposition of catalytic residues giving an RMSD of 0.5 Å across equivalent Cα atoms. Conversely, the cap domains of PnbE and Nicotiana tabacum SABP2 showed greater divergence with decreased flexibility in the PnbE cap structure. Activity of PnbE as a putative methyl salicylate esterase was supported with binding studies showing affinity for salicylic acid and functional studies showing methyl salicylate esterase activity. We hypothesise that this activity could enrich Paenibacillus sp. within the rhizosphere by increasing salicylic acid concentrations within the soil

    Biochemical studies on Francisella tularensis RelA in (p)ppGpp Biosynthesis

    Get PDF
    2 ABSTRACT The bacterial stringent response is induced by nutrient deprivation and is mediated by enzymes of the RSH superfamily that control concentrations of the "alarmones" (p)ppGpp. This regulatory pathway is present in the vast majority of pathogens and has been proposed as a potential antibacterial target. Current understanding of RelA mediated responses are based on biochemical studies using Escherichia coli as a model. In comparison, the Francisella tularensis RelA sequence contains a truncated regulatory C-terminal region and an unusual synthetase motif (EXSD). Biochemical analysis of Francisella tularensis RelA showed the similarities and differences of this enzyme compared to the model RelA from Escherichia coli. Purification of the enzyme yielded a stable dimer capable of reaching concentrations of 10 mg/mL. In contrast to other enzymes from the RelA/SpoT homologue superfamily, activity assays with F. tularensis RelA demonstrate a high degree of specificity for GTP as a pyrophosphate acceptor, with no measurable turnover for GDP. Steady state kinetic analysis of F. tularensis RelA gave saturation activity curves that best fitted a sigmoidal function. This kinetic profile can result from allosteric regulation and further measurements with potential allosteric regulators demonstrated activation by ppGpp with an EC 50 of 60 ± 1.9 ΌM. Activation of F. tularensis RelA by stalled ribosomal complexes formed with ribosomes purified from Escherichia coli MRE600 was observed, but interestingly, significantly weaker activation with ribosomes isolated from Francisella philomiragia

    A single sensor controls large variations in zinc quotas in a marine cyanobacterium

    Get PDF
    Marine cyanobacteria are critical players in global nutrient cycles that crucially depend on trace metals in metalloenzymes, including zinc for CO2 fixation and phosphorus acquisition. How strains proliferating in the vast oligotrophic ocean gyres thrive at ultra-low zinc concentrations is currently unknown. Using Synechococcus sp. WH8102 as a model we show that its zinc-sensor protein Zur differs from all other known bacterial Zur proteins in overall structure and the location of its sensory zinc site. Uniquely, Synechococcus Zur activates metallothionein gene expression, which supports cellular zinc quotas spanning two orders of magnitude. Thus, a single zinc sensor facilitates growth across pico- to micromolar zinc concentrations with the bonus of banking this precious resource. The resultant ability to grow well at both ultra-low and excess zinc, together with overall lower zinc requirements, likely contribute to the broad ecological distribution of Synechococcus across the global oceans

    The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana.

    Get PDF
    BACKGROUND: The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae), such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs), contributes to P. infestans resistance. PRINCIPAL FINDINGS: We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction) to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI) in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs. CONCLUSIONS/SIGNIFICANCE: We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1

    What is the optimum time to start antiretroviral therapy in people with HIV and tuberculosis coinfection? A systematic review and meta-analysis.

    Get PDF
    BACKGROUND: HIV and tuberculosis are frequently diagnosed concurrently. In March 2021, World Health Organization recommended that antiretroviral therapy (ART) should be started within two weeks of tuberculosis treatment start, at any CD4 count. We assessed whether earlier ART improved outcomes in people with newly diagnosed HIV and tuberculosis. METHODS: We did a systematic review by searching nine databases for trials that compared earlier ART to later ART initiation in people with HIV and tuberculosis. We included studies published from database inception to 12 March 2021. We compared ART within four weeks versus ART more than four weeks after TB treatment, and ART within two weeks versus ART between two and eight weeks, and stratified analysis by CD4 count. The main outcome was death; secondary outcomes included IRIS and AIDS-defining events. We pooled effect estimates using random effects meta-analysis. RESULTS AND DISCUSSION: We screened 2468 abstracts, and identified nine trials. Among people with all CD4 counts, there was no difference in mortality by earlier ART (≀4 week) versus later ART (>4 week) (risk difference [RD] 0%, 95% confidence interval [CI] -2% to +1%). Among people with CD4 count ≀50 cells/mm3 , earlier ART (≀4 weeks) reduced risk of death (RD -6%, -10% to -1%). Among people with all CD4 counts earlier ART (≀4 weeks) increased the risk of IRIS (RD +6%, 95% CI +2% to +10%) and reduced the incidence of AIDS-defining events (RD -2%, 95% CI -4% to 0%). Results were similar when trials were restricted to the four trials which permitted comparison of ART within two weeks to ART between two and eight weeks. Trials were conducted between 2004 and 2014, before recommendations to treat HIV at any CD4 count or to rapidly start ART in people without TB. No trials included children or pregnant women. No trials included integrase inhibitors in ART regimens. DISCUSSION: Earlier ART did not alter risk of death overall among people living with HIV who had TB disease. For logistical and patient preference reasons, earlier ART initiation for everyone with TB and HIV may be preferred to later ART
    • 

    corecore