5,712 research outputs found

    Multi-k magnetic structures in USb_{0.9}Te_{0.1} and UAs_{0.8}Se_{0.2} observed via resonant x-ray scattering at the U M4 edge

    Full text link
    Experiments with resonant photons at the U M4 edge have been performed on a sample of USb_{0.9}Te_{0.1}, which has an incommensurate magnetic structure with k = 0.596(2) reciprocal lattice units. The reflections of the form , as observed previously in a commensurate k = 1/2 system [N. Bernhoeft et al., Phys. Rev. B 69 174415 (2004)] are observed, removing any doubt that these occur because of multiple scattering or high-order contamination of the incident photon beam. They are clearly connected with the presence of a 3k configuration. Measurements of the reflections from the sample UAs_{0.8}Se_{0.2} in a magnetic field show that the transition at T* ~ 50 K is between a low-temperature 2k and high-temperature 3k state and that this transition is sensitive to an applied magnetic field. These experiments stress the need for quantitative theory to explain the intensities of these reflections.Comment: submitted to Phys. Rev.

    Proximity effect of vanadium on spin-density-wave magnetism in Cr films

    Full text link
    The spin-density wave (SDW) state in thin chromium films is well known to be strongly affected by proximity effects from neighboring layers. To date the main attention has been given to effects arising from exchange interactions at interfaces. In the present work we report on combined neutron and synchrotron scattering studies of proximity effects in Cr/V films where the boundary condition is due to the hybridization of Cr with paramagnetic V at the interface. We find that the V/Cr interface has a strong and long-range effect on the polarization, period, and the N\'{e}el temperature of the SDW in rather thick Cr films. This unusually strong effect is unexpected and not predicted by theory.Comment: 7 figure

    Pediatric palliative care for youth with HIV/AIDS: Systematic review of the literature

    Get PDF
    Improvement in treatment has led to decreased death in youth with human immunodeficiency virus (HIV) in developed countries. Despite this, youth with HIV are still at risk for increased mortality and morbidity compared with their uninfected counterparts. In developing countries, high numbers of youth die from acquired immune deficiency syndrome (AIDS)-related illnesses due to lack of access to consistent antiretroviral treatment. As a result, pediatric palliative care is a relevant topic for those providing care to youth with HIV. A systematic review was conducted to gather information regarding the status of the literature related to pediatric palliative care and medical decision-making for youth with HIV. The relevant literature published between January 2002 and June 2012 was identified through searches conducted using PubMed, CINAHL, Scopus, and PSYCInfo databases and a series of key words. Articles were reviewed by thematic analysis using the pillars of palliative care set out by the National Consensus Project. Twenty-one articles were retained after review and are summarized by theme. In general, few empirically based studies evaluating palliative care and medical decision-making in youth with HIV were identified. Articles identified focused primarily on physical aspects of care, with less attention paid to psychological, social, ethical, and cultural aspects of care. We recommend that future research focuses on broadening the evaluation of pediatric palliative care among youth with HIV by directly evaluating the psychological, social, ethical, and cultural aspects of care and investigating the needs of all involved stakeholders

    Determination of the Antiferroquadrupolar Order Parameters in UPd3

    Get PDF
    By combining accurate heat capacity and X-ray resonant scattering results we have resolved the long standing question regarding the nature of the quadrupolar ordered phases in UPd_3. The order parameter of the highest temperature quadrupolar phase has been uniquely determined to be antiphase Q_{zx} in contrast to the previous conjecture of Q_{x^2-y^2} . The azimuthal dependence of the X-ray scattering intensity from the quadrupolar superlattice reflections indicates that the lower temperature phases are described by a superposition of order parameters. The heat capacity features associated with each of the phase transitions characterize their order, which imposes restrictions on the matrix elements of the quadrupolar operators.Comment: 4 pages, 5 figure

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Geometrical locus of massive test particle orbits in the space of physical parameters in Kerr space-time

    Full text link
    Gravitational radiation of binary systems can be studied by using the adiabatic approximation in General Relativity. In this approach a small astrophysical object follows a trajectory consisting of a chained series of bounded geodesics (orbits) in the outer region of a Kerr Black Hole, representing the space time created by a bigger object. In our paper we study the entire class of orbits, both of constant radius (spherical orbits), as well as non-null eccentricity orbits, showing a number of properties on the physical parameters and trajectories. The main result is the determination of the geometrical locus of all the orbits in the space of physical parameters in Kerr space-time. This becomes a powerful tool to know if different orbits can be connected by a continuous change of their physical parameters. A discussion on the influence of different values of the angular momentum of the hole is given. Main results have been obtained by analytical methods.Comment: 26 pages, 12 figure

    Keldysh study of point-contact tunneling between superconductors

    Full text link
    We revisit the problem of point-contact tunnel junctions involving one-dimensional superconductors and present a simple scheme for computing the full current-voltage characteristics within the framework of the non-equilibrium Keldysh Green function formalism. We address the effects of different pairing symmetries combined with magnetic fields and finite temperatures at arbitrary bias voltages. We discuss extensively the importance of these results for present-day experiments. In particular, we propose ways of measuring the effects found when the two sides of the junction have dissimilar superconducting gaps and when the symmetry of the superconducting states is not the one of spin-singlet pairing. This last point is of relevance for the study of the superconducting state of certain organic materials like the Bechgaard salts and, to some extent, for ruthenium compounds.Comment: 10 pages, 4 figure
    corecore