522 research outputs found

    A detection theory account of change detection

    Get PDF
    Previous studies have suggested that visual short-term memory (VSTM) has a storage limit of approximately four items. However, the type of high-threshold (HT) model used to derive this estimate is based on a number of assumptions that have been criticized in other experimental paradigms (e.g., visual search). Here we report findings from nine experiments in which VSTM for color, spatial frequency, and orientation was modeled using a signal detection theory (SDT) approach. In Experiments 1-6, two arrays composed of multiple stimulus elements were presented for 100 ms with a 1500 ms ISI. Observers were asked to report in a yes/no fashion whether there was any difference between the first and second arrays, and to rate their confidence in their response on a 1-4 scale. In Experiments 1-3, only one stimulus element difference could occur (T = 1) while set size was varied. In Experiments 4-6, set size was fixed while the number of stimuli that might change was varied (T = 1, 2, 3, and 4). Three general models were tested against the receiver operating characteristics generated by the six experiments. In addition to the HT model, two SDT models were tried: one assuming summation of signals prior to a decision, the other using a max rule. In Experiments 7-9, observers were asked to directly report the relevant feature attribute of a stimulus presented 1500 ms previously, from an array of varying set size. Overall, the results suggest that observers encode stimuli independently and in parallel, and that performance is limited by internal noise, which is a function of set size

    Face-gender discrimination is possible in the near-absence of attention

    Get PDF
    The attentional cost associated with the visual discrimination of the gender of a face was investigated. Participants performed a face-gender discrimination task either alone (single-task) or concurrently (dual-task) with a known attentional demanding task (5-letter T/L discrimination). Overall performance on face-gender discrimination suffered remarkably little under the dual-task condition compared to the single-task condition. Similar results were obtained in experiments that controlled for potential training effects or the use of low-level cues in this discrimination task. Our results provide further evidence against the notion that only low-level representations can be accessed outside the focus of attention

    A Single-Neuron Correlate of Change Detection and Change Blindness in the Human Medial Temporal Lobe

    Get PDF
    Observers are often unaware of changes in their visual environment when attention is not focused at the location of the change [1,2,3,4]. Because of its rather intriguing nature, this phenomenon, known as change blindness, has been extensively studied with psychophysics [5,6,7] as well as with fMRI [8,9,10,11]. However, whether change blindness can be tracked in the activity of single cells is not clear. To explore the neural correlates of change detection and change blindness, we recorded from single neurons in the human medial temporal lobe (MTL) during a change-detection paradigm. The preferred pictures of the visually responsive units elicited significantly higher firing rates on the attended trials when subjects correctly identified a change (change detection) compared to the unattended trials when they missed it (change blindness). On correct trials, the firing activity of individual units allowed us to predict the occurrence of a change, on a trial-by-trial basis, with 67% accuracy. In contrast, this prediction was at chance for incorrect, unattended trials. The firing rates of visually selective MTL cells thus constitute a neural correlate of change detection

    Hybrid Electric Propulsion Systems for Medium-Range Aircraft from a Maintenance Point of View

    Get PDF
    The use of a hybrid electric propulsion system for aircraft offers the potential to increase aircraft efficiency, reduce fuel consumption and thus reduce emissions. Design concepts, emission analysis and aircraft performance are being studied extensively. However, how future hybrid electric propulsion systems will change the maintenance, repair and overhaul (MRO) of an aircraft is also an important consideration. This paper examines the effects of hybridisation on a parallel hybrid electric propulsion system of a medium-range aircraft, the Airbus A320, powered by an IAE V2500 engine. The electric motor is powered by a battery and is used to assist the turbofan engine, mainly during the takeoff phase. The additional system components of the chosen hybrid electric propulsion system and their corresponding damage mechanisms are addressed from a maintenance point of view. Challenges for future maintenance are discussed and possible failure modes and failure possibilities are analysed. For this purpose, a Failure Mode and Effects Analysis and a Fault Tree Analysis will be carried out. The results of this analysis can be used to determine how the additional components need to be designed to maintain the overall safety of the propulsion system at the current level. This will also provide needs and ideas for a future design for maintenance

    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators.

    Get PDF
    Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes

    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators

    Get PDF
    Significance: Although viruses are well-characterized regulators of eukaryotic algae, little is known about those infecting unicellular predators in oceans. We report the largest marine virus genome yet discovered, found in a wild predatory choanoflagellate sorted away from other Pacific microbes and pursued using integration of cultivation-independent and laboratory methods. The giant virus encodes nearly 900 proteins, many unlike known proteins, others related to cellular metabolism and organic matter degradation, and 3 type-1 rhodopsins. The viral rhodopsin that is most abundant in ocean metagenomes, and also present in an algal virus, pumps protons when illuminated, akin to cellular rhodopsins that generate a proton-motive force. Giant viruses likely provision multiple host species with photoheterotrophic capacities, including predatory unicellular relatives of animals. Abstract: Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae. Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes

    Regulation of ABCC6 trafficking and stability by a conserved C-terminal PDZ-like sequence

    Get PDF
    Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6 protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the ABCC6 protein. © 2014 Xue et al
    corecore