11 research outputs found

    Differentiating between hydrothermal and diagenetic carbonate using rare earth element and yttrium (REE+Y) geochemistry: a case study from the Paleoproterozoic George Fisher massive sulfide Zn deposit, Mount Isa, Australia

    Get PDF
    Carbonate minerals are ubiquitous in most sediment-hosted mineral deposits. These deposits can contain a variety of carbonate types with complex paragenetic relationships. When normalized to chondritic values (CN), rare-earth elements and yttrium (REE+YCN) can be used to constrain fluid chemistry and fluid-rock interaction processes in both low- and high-temperature settings. Unlike other phases (e.g., pyrite), the application of in situ laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) data to the differentiation of pre-ore and hydrothermal carbonates remains relatively untested. To assess the potential applicability of carbonate in situ REE+Y data, we combined transmitted light and cathodoluminescence (CL) petrography with LA-ICP-MS analysis of carbonate mineral phases from (1) the Proterozoic George Fisher clastic dominated (CD-type) massive sulfide deposit and from (2) correlative, barren host rock lithologies (Urquhart Shale Formation). The REE+YCN composition of pre-ore calcite suggests it formed during diagenesis from diagenetic pore fluids derived from ferruginous, anoxic seawater. Hydrothermal and hydrothermally altered calcite and dolomite from George Fisher is generally more LREE depleted than the pre-ore calcite, whole-rock REE concentrations, and shale reference values. We suggest this is the result of hydrothermal alteration by saline Cl--rich mineralizing fluids. Furthermore, the presence of both positive and negative Eu/Eu* values in calcite and dolomite indicates that the mineralizing fluids were relatively hot (>250°C) and cooled below 200–250°C during ore formation. This study confirms the hypothesis that in situ REE+Y data can be used to differentiate between pre-ore and hydrothermal carbonate and provide important constraints on the conditions of ore formation

    Oxygen isotope compositions of conodonts – analytical challenges of in situ SIMS studies

    Get PDF
    Reliable deep-time environmental and climate reconstructions are needed to understand the drivers of Earthñs system evolution over geological time. Palaeozoic temperature estimates, including reconstructions of the climate change through the Ordovician, are based mainly on oxygen isotope (18O/16O; ή18OVSMOW) thermometry derived from carbonate rocks with fossils such as calcitic brachiopods and phosphatic conodonts that are often the best preserved repositories of environmental conditions. Palaeoenvironmental reconstructions are reliable only if the geochemical data is obtained using well-calibrated analytical tools. Most previous research devoted to oxygen isotope composition of conodonts has been conducted using the bulk method (gas source isotope ratio mass spectrometry (GS-IRMS)) that typically requires pooling several dozens of conodont elements for a single isotope ratio measurement. As such, studies of conodont-poor intervals and assessments of taxon-specific ή18O variability require extensive sample preparation and are challenging using the bulk method. Such challenges can be addressed by in situ secondary ion mass spectrometry (SIMS) analyses using only picogram sampling masses. However, several studies have reported inconsistencies between SIMS and GS-IRMS ή18O data for the same research material. We aim to solve this controversy by establishing a robust analytical protocol for conodont isotope analysis by SIMS. Here we present conodont data on Pterospathodus and Amorphognathus specimens extracted from Ordovician strata in Nurme and Mehikoorma-421 boreholes (Estonia). Oxygen isotope composition of conodonts was analysed by both SIMS and GS-IRMS, where we paid particular attention to four inorganic apatite reference materials in order to understand the offset between these two techniques that have been reported in the literature. While the results of GS-IRMS measurements conducted using high-temperature reduction of Ag3PO4 represent exclusively ή18O of phosphate-bound oxygen, SIMS analyses do not discriminate between different oxygen components (e.g., (PO4)3ñ, (SiO4)4ñ, (CO3)2ñ, and (OH)ñ) in apatite, inherently providing information on pooled isotope compositions. We conducted quantitative chemical analyses of selected conodont elements by electron probe microanalysis to assess to what extent matrix effects cause the offsets between the two isotope techniques. We also used scanning electron microscopy and white light optical profilometry to evaluate sample topography and porosity, which have a major impact on SIMS data quality. We collected oxygen isotope data using a CAMECA 1280-HR large geometry instrument at the Potsdam SIMS user facility over several months to determine reproducibility of the results and to optimise a routine measurement protocol. Our tests included a variety of instrumental settings, e.g., different raster parameters for both pre-sputtering and data collection, which yielded slightly differing results due to different instrumental mass fractionation. SIMS is a comparative method, and as such relies on reference materials that have been previously characterised by bulk methods, ideally provided by multiple laboratories. We noted that the inconsistent offsets between SIMS and GS-IRMS data obtained for a given conodont specimen (with SIMS ή18O values in most cases being higher) are linked to reference material measurements that are necessary for conodont data calibration and are often biased towards lighter ή18O values. Our tests show that such bias is even more significant when calibration is based on a single reference material characterised by a single GS-IRMS laboratory, which has been a common practice in past conodont studies

    Differentiating between hydrothermal and diagenetic carbonate using rare earth element and yttrium (REE+Y) geochemistry: a case study from the Paleoproterozoic George Fisher massive sulfide Zn deposit, Mount Isa, Australia

    No full text
    Carbonate minerals are ubiquitous in most sediment-hosted mineral deposits. These deposits can contain a variety of carbonate types with complex paragenetic relationships. When normalized to chondritic values (CN), rare-earth elements and yttrium (REE+YCN) can be used to constrain fluid chemistry and fluid-rock interaction processes in both low- and high-temperature settings. Unlike other phases (e.g., pyrite), the application of in situ laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) data to the differentiation of pre-ore and hydrothermal carbonates remains relatively untested. To assess the potential applicability of carbonate in situ REE+Y data, we combined transmitted light and cathodoluminescence (CL) petrography with LA-ICP-MS analysis of carbonate mineral phases from (1) the Proterozoic George Fisher clastic dominated (CD-type) massive sulfide deposit and from (2) correlative, barren host rock lithologies (Urquhart Shale Formation). The REE+YCN composition of pre-ore calcite suggests it formed during diagenesis from diagenetic pore fluids derived from ferruginous, anoxic seawater. Hydrothermal and hydrothermally altered calcite and dolomite from George Fisher is generally more LREE depleted than the pre-ore calcite, whole-rock REE concentrations, and shale reference values. We suggest this is the result of hydrothermal alteration by saline Cl--rich mineralizing fluids. Furthermore, the presence of both positive and negative Eu/Eu* values in calcite and dolomite indicates that the mineralizing fluids were relatively hot (>250°C) and cooled below 200–250°C during ore formation. This study confirms the hypothesis that in situ REE+Y data can be used to differentiate between pre-ore and hydrothermal carbonate and provide important constraints on the conditions of ore formation.Helmholtz-Gemeinschaft http://dx.doi.org/10.13039/501100001656https://doi.org/10.5880/GFZ.3.1.2020.00

    Synthesis, structure refinement and single-crystal elasticity of Al-bearing superhydrous phase B

    No full text
    Dense hydrous magnesium silicates (DHMSs) with large water content and wide stability fields are a potential H2O reservoir in the deep Earth. Al-bearing superhydrous phase B (shy-B) with a wider stability field than the Al-free counterpart can play an important role in understanding H2_2O transport in the Earth’s transition zone and topmost lower mantle. In this study, a nominally Al-free and two different Al-bearing shy-B with 0.47(2) and 1.35(4) Al atoms per formula unit (pfu), were synthesized using a rotating multi-anvil press. The single-crystal structures were investigated by X-ray diffraction (XRD) complemented by Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Single-crystal XRD shows that the cell parameters decrease with increasing Al-content. By combining X-ray diffraction and spectroscopy results, we conclude that the Al-poor shy-B crystallizes in the Pnn2 space group with hydrogen in two different general positions. Based on the results of the single crystal X-ray diffraction refinements combined with FTIR spectroscopy, three substitutions mechanisms are proposed: 2 Al3+^{3+} = Mg2+^{2+} + Si4+^{4+}; Mg2+^{2+} ☐Mg2+^{Mg2+} + 2H+^+ (☐Mg2+^{Mg2+} means vacancy in Mg site); ; Si4+^{4+} = Al3+^{3+} + H+^+. Thus, in addition to the two general H positions, hydrogen is incorporated into the hydrous mineral via point defects. The elastic stiffness coefficients were measured for the Al-shy-B with 1.35 pfu Al by Brillouin scattering (BS). Al-bearing shy-B shows lower C11_{11}, higher C22_{22} and similar C33_{33} when compared to Al-free shy-B. The elastic anisotropy of Al-bearing shy-B is also higher than that of the Al-free composition. Such different elastic properties are due to the effect of lattice contraction as a whole and the specific chemical substitution mechanism that affect bonds strength. Al-bearing shy-B with lower velocity, higher anisotropy and wider thermodynamic stability can help to understand the low velocity zone and high anisotropy region in the subducted slab located in Tonga

    Thermal infrared emissivity spectral library of silicates measured under the Mercury simulated environment

    No full text
    <p>This is the thermal emissivity spectral library of silicates measured as a function of temperature under Mercury simulated environment. Data is measured at the Planetary Spectroscopy Laboratory (PSL), Institute of Planetary Research, German Aerospace Center (DLR), Berlin. The spectral library will be used for mineral identification of Mercury surface using MERTIS datasets. The manuscript related to this work is submitted to Icarus on the title "<strong>Thermal Infrared Spectroscopy (7-14 µm) of Silicates under Simulated Mercury Daytime Surface Conditions and their Detection: Supporting MERTIS onboard the BepiColombo Mission".</strong></p&gt

    Mineral dissolution and reprecipitation mediated by an amorphous phase

    Get PDF
    Fluid-mediated mineral dissolution is a key mechanism for mineral reactions in the Earth. Here, the authors show that element transport during mineral dissolution and reprecipitation reactions can be mediated by an amorphous phase, which can contain significant amounts of metals

    Mid-Cretaceous extensional magmatism in the Alborz Mountains, north Iran; geochemistry and geochronology of Gasht-Masuleh gabbros

    No full text
    Abstract In the Gasht-Masuleh area in the Alborz Mountains, gabbroic magma intruded Palaeozoic metasediments and Mesozoic sediments and crystallised as isotropic and cumulate gabbros. LREE enrichment points to relatively low degrees of mantle melting and depletion of Ti, Nb and Ta relative to primitive mantle points to an arc related component in the magma. Clinopyroxene compositions indicate MORB to arc signatures. U–Pb zircon crystallisation ages of 99.5 ± 0.6 Ma and 99.4 ± 0.6 Ma and phlogopite 40Ar/39Ar ages of 97.1 ± 0.4 Ma, 97.5 ± 0.4 Ma, 97.1 ± 0.1 Ma, within 2σ error, indicate that gabbro intrusion occurred in the (Albian-)Cenomanian (mid-Cretaceous). As active subduction did not take place in the Cretaceous in North Iran, the small volume mafic magmatism in the Gasht-Masuleh area must be due to local, extension-related mantle melting. Melting was most likely caused by far field effects triggered by roll-back of the Neo-Tethys subducting slab. As subduction took place at a distance of ~ 400 km (present distance) from the Alborz Mountains, the observed arc geochemical signatures must be inherited from a previous subduction event and concomitant mantle metasomatism, possibly in combination with contamination of the magma by crustal material

    Inter‐laboratory Characterisation of Apatite Reference Materials for Chlorine Isotope Analysis

    No full text
    Here we report on a set of six apatite reference materials (chlorapatites MGMH#133648, TUBAF#38 and fluorapatites MGMH#128441A, TUBAF#37, 40, 50) which we have characterised for their chlorine isotope ratios; these RMs span a range of Cl mass fractions within the apatite Ca10(PO4)6(F,Cl,OH)2 solid solution series. Numerous apatite specimens, obtained from mineralogical collections, were initially screened for 37Cl/35Cl homogeneity using SIMS followed by ÎŽ37Cl characterisation by gas source mass spectrometry using both dual‐inlet and continuous‐flow modes. We also report major and key trace element compositions as determined by EPMA. The repeatability of our SIMS results was better than ± 0.10% (1s) for the five samples with > 0.5% m/m Cl and ± 0.19% (1s) for the low Cl abundance material (0.27% m/m). We also observed a small, but significant crystal orientation effect of 0.38% between the mean 37Cl/35Cl ratios measured on three oriented apatite fragments. Furthermore, the results of GS‐IRMS analyses show small but systematic offset of ÎŽ37ClSMOC values between the three laboratories. Nonetheless, all studied samples have comparable chlorine isotope compositions, with mean 103ÎŽ37ClSMOC values between +0.09 and +0.42 and in all cases with 1s ≀ ± 0.25.Key Points: Six apatite reference materials having various Cl mass fractions were characterised for chlorine isotope ratios by SIMS and three GS‐IRMS laboratories. A small, but significant, crystal orientation effect was recorded by SIMS analyses. Correlation of instrumental mass fractionation factor with Cl mass fraction is visible along the apatite solid solution series.Narodowe Centrum NaukiDeutscher Akademischer AustauschdienstHelmholtz Recruiting InitiativeInstitute of Geological Sciences, Polish Academy of Science
    corecore