21 research outputs found

    Protein phosphatase 2A affects myofilament contractility in non-failing but not in failing human myocardium

    Get PDF
    Protein phosphatase (PP) type 2A is a multifunctional serine/threonine phosphatase that is involved in cardiac excitation–contraction coupling. The PP2A core enzyme is a dimer, consisting of a catalytic C and a scaffolding A subunit, which is targeted to several cardiac proteins by a regulatory B subunit. At present, it is controversial whether PP2A and its subunits play a critical role in end-stage human heart failure. Here we report that the application of purified PP2AC significantly increased the Ca2+-sensitivity (ΔpCa50 = 0.05 ± 0.01) of the contractile apparatus in isolated skinned myocytes of non-failing (NF) hearts. A higher phosphorylation of troponin I (cTnI) was found at protein kinase A sites (Ser23/24) in NF compared to failing myocardium. The basal Ca2+-responsiveness of myofilaments was enhanced in myocytes of ischemic (ICM, ΔpCa50 = 0.10 ± 0.03) and dilated (DCM, ΔpCa50 = 0.06 ± 0.04) cardiomyopathy compared to NF. However, in contrast to NF myocytes the treatment with PP2AC did not shift force-pCa relationships in failing myocytes. The higher basal Ca2+-sensitivity in failing myocytes coincided with a reduced protein expression of PP2AC in left ventricular tissue from patients suffering from ICM and DCM (by 50 and 56% compared to NF, respectively). However, PP2A activity was unchanged in failing hearts despite an increase of both total PP and PP1 activity. The expression of PP2AB56α was also decreased by 51 and 62% in ICM and DCM compared to NF, respectively. The phosphorylation of cTnI at Ser23/24 was reduced by 66 and 49% in ICM and DCM compared to NF hearts, respectively. Our results demonstrate that PP2A increases myofilament Ca2+-sensitivity in NF human hearts, most likely via cTnI dephosphorylation. This effect is not present in failing hearts, probably due to the lower baseline cTnI phosphorylation in failing compared to non-failing hearts

    Buchbesprechungen

    No full text

    A cell-autonomous role for WT1 in regulating Sry in vivo

    No full text
    Human patients with Frasier syndrome express reduced levels of the +KTS isoforms of the developmental regulator WT1 and exhibit complete XY gonadal dysgenesis and male-to-female sex reversal. Mice with a targeted mutation that blocks production of these isoforms show a reduction in Sry mRNA in the gonad, but the molecular and cellular basis of this reduction has not been established. Using immunofluorescence analysis, we found a significantly lower level of SRY protein per cell in XY Wt1(+KTS)-null mouse gonads. We also found a reduced number of SRY-expressing cells, correlating with a decrease in cell proliferation at and near the coelomic epithelium at 11.5 dpc. No reduction in somatic cell numbers was seen in XX Wt1(+KTS)-null gonads, indicating that the effect of WT1 on cell proliferation is mediated by Sry. Sertoli cell differentiation was blocked in XY Wt1(+KTS)-null mouse gonads, as indicated by the loss of SOX9 and Fgf9 expression, but the addition of recombinant FGF9 to ex vivo gonad cultures rescued the mutant phenotype, as indicated by the induction of the Sertoli-cell specific marker anti-Müllerian hormone. Our data suggest that WT1(+KTS) is involved in the cell-autonomous regulation of Sry expression, which in turn influences cell proliferation and Sertoli cell differentiation via FGF9. Thus, sex reversal in Wt1(+KTS)-null mice and Frasier syndrome patients results from a failure of Sertoli cells both to fully differentiate and to reach sufficient numbers to direct testis development

    Allergische Reaktionsmechanismen

    No full text

    Constructed Insecurities: Discourse Analysis and the Understanding of Violence in Central America

    No full text
    corecore