5,625 research outputs found

    Part Form Errors Predicted from Machine Tool Performance Measurements

    Get PDF
    Machine tool performance testing, as defined by IS0 230 and ANSI B5.54 has been successfully used to maintain and improve the accuracy and repeatability of production-level machine tools. In this study, a controlled series of experiments have been used to test the efficacy of these performance tests in the prediction of part form errors. Results are shown for flatness, squareness, position, and profile tolerances. The experimental results suggest that standard machine tool performance tests can also be used to predict the “best-case” tolerances that can be achieved for particular part features

    Quantum nondemolition-like, fast measurement scheme for a superconducting qubit

    Get PDF
    We present a measurement protocol for a flux qubit coupled to a dc-Superconducting QUantum Interference Device (SQUID), representative of any two-state system with a controllable coupling to an harmonic oscillator quadrature, which consists of two steps. First, the qubit state is imprinted onto the SQUID via a very short and strong interaction. We show that at the end of this step the qubit dephases completely, although the perturbation of the measured qubit observable during this step is weak. In the second step, information about the qubit is extracted by measuring the SQUID. This step can have arbitrarily long duration, since it no longer induces qubit errors.Comment: published version, minor correction

    The Josephson critical current in a long mesoscopic S-N-S junction

    Full text link
    We carry out an extensive experimental and theoretical study of the Josephson effect in S-N-S junctions made of a diffusive normal metal (N) embedded between two superconducting electrodes (S). Our experiments are performed on Nb-Cu-Nb junctions with highly-transparent interfaces. We give the predictions of the quasiclassical theory in various regimes on a precise and quantitative level. We describe the crossover between the short and the long junction regimes and provide the temperature dependence of the critical current using dimensionless units eRNIc/ϵceR_{N}I_{c}/\epsilon_{c} and kBT/ϵck_{B}T/\epsilon_{c} where ϵc\epsilon_{c} is the Thouless energy. Experimental and theoretical results are in excellent quantitative agreement.Comment: 5 pages, 4 figures, slighly modified version, publishe

    Strain enhancement of superconductivity in CePd2Si2 under pressure

    Full text link
    We report resistivity and calorimetric measurements on two single crystals of CePd2Si2 pressurized up to 7.4 GPa. A weak uniaxial stress induced in the pressure cell demonstrates the sensitivity of the physics to anisotropy. Stress applied along the c-axis extends the whole phase diagram to higher pressures and enhances the superconducting phase emerging around the magnetic instability, with a 40% increase of the maximum superconducting temperature, Tc, and a doubled pressure range. Calorimetric measurements demonstrate the bulk nature of the superconductivity.Comment: 4 pages, 4 figure

    Crossover from weak to strong coupling regime in dispersive circuit QED

    Full text link
    We study the decoherence of a superconducting qubit due to the dispersive coupling to a damped harmonic oscillator. We go beyond the weak qubit-oscillator coupling, which we associate with a phase Purcell effect, and enter into a strong coupling regime, with qualitatively different behavior of the dephasing rate. We identify and give a physicaly intuitive discussion of both decoherence mechanisms. Our results can be applied, with small adaptations, to a large variety of other physical systems, e. g. trapped ions and cavity QED, boosting theoretical and experimental decoherence studies.Comment: Published versio

    Assessment of the U and Co magnetic moments in UCoGe by X-ray magnetic circular dichroism

    Full text link
    The ferromagnetic superconductor UCoGe has been investigated by high field X-ray magnetic circular dichroism (XMCD) at the U-M4,5_{4,5} and Co/Ge-K edges. The analysis of the branching ratio and XMCD at the U-M4,5_{4,5} edges reveals that the U-5ff electrons count is close to 3. The orbital (0.70μB\sim0.70\,\mu_B) and spin (0.30μB\sim-0.30\,\mu_B) moments of U at 2.1K and 17T (H//c) have been determined. Their ratio (2.3\sim-2.3) suggests a significant delocalization of the 5ff electron states. The similar field dependences of the local U/Co and the macroscopic magnetization indicate that the Co moment is induced by the U moment. The XMCD at the Co/Ge-K edges reveal the presence of small Co-4pp and Ge-4pp orbital moments parallel to the macroscopic magnetization. In addition, the Co-3dd moment is estimated to be at most of the order of 0.1μB\mu_B at 17T. Our results rule out the possibility of an unusual polarisability of the U and Co moments as well as their antiparallel coupling. We conclude that the magnetism which mediates the superconductivity in UCoGe is driven by U.Comment: 4 figures + supplementary materia

    Noise Properties of Superconducting Coplanar Waveguide Microwave Resonators

    Get PDF
    We have measured noise in thin-film superconducting coplanar waveguide resonators. This noise appears entirely as phase noise, equivalent to a jitter of the resonance frequency. In contrast, amplitude fluctuations are not observed at the sensitivity of our measurement. The ratio between the noise power in the phase and amplitude directions is large, in excess of 30 dB. These results have important implications for resonant readouts of various devices such as detectors, amplifiers, and qubits. We suggest that the phase noise is due to two-level systems in dielectric materials.Comment: 4 pages, 3 figures, accepted for publication in Applied Physics Letter

    Dephasing of a superconducting flux qubit

    Full text link
    In order to gain a better understanding of the origin of decoherence in superconducting flux qubits, we have measured the magnetic field dependence of the characteristic energy relaxation time (T1T_1) and echo phase relaxation time (T2echoT_2^{\rm echo}) near the optimal operating point of a flux qubit. We have measured T2echoT_2^{\rm echo} by means of the phase cycling method. At the optimal point, we found the relation T2echo2T1T_2^{\rm echo}\approx 2T_1. This means that the echo decay time is {\it limited by the energy relaxation} (T1T_1 process). Moving away from the optimal point, we observe a {\it linear} increase of the phase relaxation rate (1/T2echo1/T_{2}^{\rm echo}) with the applied external magnetic flux. This behavior can be well explained by the influence of magnetic flux noise with a 1/f1/f spectrum on the qubit
    corecore