48 research outputs found

    The genetic architecture of susceptibility to parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions – such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants.</p> <p>Results</p> <p>Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically – that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments.</p> <p>Conclusion</p> <p>This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.</p

    Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae).

    Get PDF
    BACKGROUND: ADARs are RNA editing enzymes that target double stranded RNA and convert adenosine to inosine, which is read by translation machinery as if it were guanosine. Aside from their role in generating protein diversity in the central nervous system, ADARs have been implicated in the hypermutation of some RNA viruses, although why this hypermutation occurs is not well understood. RESULTS: Here we describe the hypermutation of adenosines to guanosines in the genome of the sigma virus--a negative sense RNA virus that infects Drosophila melanogaster. The clustering of these mutations and the context in which they occur indicates that they have been caused by ADARs. However, ADAR-editing of viral RNA is either rare or edited viral RNA are rapidly degraded, as we only detected evidence for editing in two of the 104 viral isolates we studied. CONCLUSION: This is the first evidence for ADARs targeting viruses outside of mammals, and it raises the possibility that ADARs could play a role in the antiviral defences of insects.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Virus prevalence and genetic diversity across a wild bumblebee community

    Get PDF
    Viruses are key population regulators, but we have limited knowledge of the diversity and ecology of viruses. This is even the case in wild host populations that provide ecosystem services, where small fitness effects may have major ecological impacts in aggregate. One such group of hosts are the bumblebees, which have a major role in the pollination of food crops and have suffered population declines and range contractions in recent decades. In this study, we investigate the diversity of four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus and Loch Morlich virus), and two previously known viruses that infect both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow bee paralysis virus) from isolates in Scotland. We investigate the ecological and environmental factors that determine viral presence and absence. We show that the recently discovered bumblebee viruses were more genetically diverse than the viruses shared with honeybees. Coinfection is potentially important in shaping prevalence: we found a strong positive association between River Liunaeg virus and Loch Morlich virus presence after controlling for host species, location and other relevant ecological variables. We tested for a relationship between environmental variables (temperature, UV radiation, wind speed and prevalence), but as we had few sampling sites, and thus low power for site-level analyses, we could not conclude anything regarding these variables. We also describe the relationship between the bumblebee communities at our sampling sites. This study represents a first step in the description of predictors of bumblebee infection in the wild

    Increasing flower species richness in agricultural landscapes alters insect pollinator networks: Implications for bee health and competition

    Get PDF
    Ecological restoration programs are established to reverse land degradation, mitigate biodiversity loss, and reinstate ecosystem services. Following recent agricultural intensification that led to a decrease in flower diversity and density in rural areas and subsequently to the decline of many insects, conservation measures targeted at pollinators have been established, including sown wildflower strips (WFS) along field margins. Historically successful in establishing a high density of generalist bees and increasing pollinator diversity, the impact of enhanced flower provision on wider ecological interactions and the structure of pollinator networks has been rarely investigated. Here, we tested the effects of increasing flower species richness and flower density in agricultural landscapes on bee‐plant interaction networks. We measured plant species richness and flower density and surveyed honeybee and bumblebee visits on flowers across a range of field margins on 10 UK farms that applied different pollinator conservation measures. We found that both flower species richness and flower density significantly increased bee abundance, in early and late summer, respectively. At the network level, we found that higher flower species richness did not significantly alter bee species' generality indices, but significantly reduced network connectance and marginally reduced niche overlap across honeybees and bumblebee species, a proxy for insect competition. While higher connectance and niche overlap is believed to strengthen network robustness and often is the aim for the restoration of pollinator networks, we argue that carefully designed WFS may benefit bees by partitioning their foraging niche, limiting competition for resources and the potential for disease transmission via shared floral use. We also discuss the need to extend WFS and their positive effects into spring when wild bee populations are established

    A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758) reveals slow genome and chromosome evolution in the Apidae.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL) mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers. This genome-wide comparison allows insights into structural conservations and rearrangements and thus the evolution on a chromosomal level. RESULTS: The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups (LGs) and has a length of 2'047 cM with an average marker distance of 4.02 cM. Based on a genome size of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 21% in rearranged blocks on the same homologous LG. CONCLUSIONS: This study demonstrates that, despite the very high recombination rates of both A. mellifera and B. terrestris and a long divergence time of about 100 million years, the genomes' genetic architecture is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome organization and conserved molecular markers can be used as a powerful tool for comparative genomics and evolutionary studies, opening up new avenues of research in the Apidae

    Disease association mapping in Drosophila can be replicated in the wild

    Get PDF
    Association and linkage mapping have become important tools in understanding the genetics of complex traits, including diseases in humans. As the success of association mapping is reduced by small effect sizes and limited power, linkage studies in laboratory-based model systems are still heavily used. But whether the results of these studies can be replicated in natural populations has been questioned. Here, we show that a polymorphism in the gene ref(2)P, which had previously been linked to sigma virus resistance in Drosophila melanogaster under laboratory conditions, also provides resistance against the virus in female flies in a wild population in the field. This genetic association is thus upheld in spite of a known genotype-by-genotype interaction and environmental variation

    Increasing flower species richness in agricultural landscapes alters insect pollinator networks: implications for bee health and competition

    Get PDF
    Ecological restoration programs are established to reverse land degradation, mitigate biodiversity loss, and reinstate ecosystem services. Following recent agricultural intensification that led to a decrease in flower diversity and density in rural areas and subsequently to the decline of many insects, conservation measures targeted at pollinators have been established, including sown wildflower strips (WFS) along field margins. Historically successful in establishing a high density of generalist bees and increasing pollinator diversity, the impact of enhanced flower provision on wider ecological interactions and the structure of pollinator networks has been rarely investigated. Here, we tested the effects of increasing flower species richness and flower density in agricultural landscapes on bee-plant interaction networks. We measured plant species richness and flower density and surveyed honeybee and bumblebee visits on flowers across a range of field margins on 10 UK farms that applied different pollinator conservation measures. We found that both flower species richness and flower density significantly increased bee abundance, in early and late summer, respectively. At the network level, we found that higher flower species richness did not significantly alter bee species' generality indices, but significantly reduced network connectance and marginally reduced niche overlap across honeybees and bumblebee species, a proxy for insect competition. While higher connectance and niche overlap is believed to strengthen network robustness and often is the aim for the restoration of pollinator networks, we argue that carefully designed WFS may benefit bees by partitioning their foraging niche, limiting competition for resources and the potential for disease transmission via shared floral use. We also discuss the need to extend WFS and their positive effects into spring when wild bee populations are established

    Rhabdoviruses in Two Species of Drosophila: Vertical Transmission and a Recent Sweep

    Get PDF
    Insects are host to a diverse range of vertically transmitted micro-organisms, but while their bacterial symbionts are well-studied, little is known about their vertically transmitted viruses. We have found that two sigma viruses (Rhabdoviridae) recently discovered in Drosophila affinis and Drosophila obscura are both vertically transmitted. As is the case for the sigma virus of Drosophila melanogaster, we find that both males and females can transmit these viruses to their offspring. Males transmit lower viral titers through sperm than females transmit through eggs, and a lower proportion of their offspring become infected. In natural populations of D. obscura in the United Kingdom, we found that 39% of flies were infected and that the viral population shows clear evidence of a recent expansion, with extremely low genetic diversity and a large excess of rare polymorphisms. Using sequence data we estimate that the virus has swept across the United Kingdom within the past ∼11 years, during which time the viral population size doubled approximately every 9 months. Using simulations based on our lab estimates of transmission rates, we show that the biparental mode of transmission allows the virus to invade and rapidly spread through populations at rates consistent with those measured in the field. Therefore, as predicted by our simulations, the virus has undergone an extremely rapid and recent increase in population size. In light of this and earlier studies of a related virus in D. melanogaster, we conclude that vertically transmitted rhabdoviruses may be common in insects and that these host–parasite interactions can be highly dynamic

    Complex relationship between amino acids, fitness and food intake in Bombus terrestris

    Get PDF
    The ratio of amino acids to carbohydrates (AA:C) that bumble bees consume has been reported to affect their survival. However, it is unknown how dietary AA:C ratio affects other bumble bee fitness traits (e.g., fecundity, condition) and possible trade-offs between them. Moreover, while individual AAs affect phenotype in many species, the effects of AA blend on bumble bee fitness and food intake are unclear. We test how the AA:C ratio that bumble bees (Bombus terrestris) consume affects their condition (abdomen lipid and dry mass), survival following food removal, and ovarian activation. We then compare ovarian activation and food intake in bees fed identical AA:C ratios, but where the blend of AAs in diets differ, i.e., diets contained the same 10 AAs in an equimolar ratio or in the same ratio as in bee collected pollen. We found that AA:C ratio did not significantly affect survival following food removal or ovarian activation; however, high AA intake increased body mass, which is positively correlated with multiple fitness traits in bumble bees. AA blend (i.e., equimolar versus pollen) did not significantly affect overall ovarian activation or consumption of each experimental diet. However, there was an interaction between AA mix and dietary AA:C ratio affecting survival during the feeding experiment, and signs that there may have been weak, interactive effects of AA mix and AA:C ratio on food consumption. These results suggest that the effect of total AA intake on bumble bee phenotype may depend on the blend of individual AAs in experimental diets. We suggest that research exploring how AA blend affects bumble bee performance and dietary intake is warranted, and highlight that comparing research on bee nutrition is complicated by even subtle variation in experimental diet composition

    An emerging viral pathogen truncates population age structure in a European amphibian and may reduce population viability

    Get PDF
    Infectious diseases can alter the demography of their host populations, reducing their viability even in the absence of mass mortality. Amphibians are the most threatened group of vertebrates globally, and emerging infectious diseases play a large role in their continued population declines. Viruses belonging to the genus Ranavirus are responsible for one of the deadliest and most widespread of these diseases. To date, no work has used individual level data to investigate how ranaviruses affect population demographic structure. We used skeletochronology and morphology to evaluate the impact of ranaviruses on the age structure of populations of the European common frog (Rana temporaria) in the UK. We compared ecologically similar populations that differed most notably in their historical presence or absence of ranavirosis (the acute syndrome caused by ranavirus infection). Our results suggest that ranavirosis may truncate the age structure of R. temporaria populations. One potential explanation for such a shift might be increased adult mortality and subsequent shifts in the life history of younger age classes that increase reproductive output earlier in life. Additionally, we constructed population projection models which indicated that such increased adult mortality could heighten the vulnerability of frog populations to stochastic environmental challenges
    corecore