68 research outputs found

    Sirtuin-mediated nuclear differentiation and programmed degradation in Tetrahymena

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The NAD<sup>+</sup>-dependent histone deacetylases, known as "sirtuins", participate in a variety of processes critical for single- and multi-cellular life. Recent studies have elucidated the importance of sirtuin activity in development, aging, and disease; yet, underlying mechanistic pathways are not well understood. Specific sirtuins influence chromatin structure and gene expression, but differences in their pathways as they relate to distinct chromatin functions are just beginning to emerge. To further define the range of global chromatin changes dependent on sirtuins, unique biological features of the ciliated protozoan <it>Tetrahymena thermophila </it>can be exploited. This system offers clear spatial and temporal separation of multiple whole genome restructuring events critical for the life cycle.</p> <p>Results</p> <p>Inhibition with nicotinamide revealed that sirtuin deacetylase activity in <it>Tetrahymena </it>cells promotes chromatin condensation during meiotic prophase, differentiation of heterochromatin from euchromatin during development, and chromatin condensation/degradation during programmed nuclear death. We identified a class I sirtuin, called Thd14, that resides in mitochondria and nucleoli during vegetative growth, and forms a large sub-nuclear aggregate in response to prolonged cell starvation that may be peripherally associated with nucleoli. During sexual conjugation and development Thd14 selectively concentrates in the parental nucleus prior to its apoptotic-like degradation.</p> <p>Conclusions</p> <p>Sirtuin activity is important for several functionally distinct events requiring global chromatin condensation. Our findings suggest a novel role for sirtuins in promoting programmed pycnosis by acting on chromatin destined for degradation. The sirtuin Thd14, which displays physiological-dependent differential localization within the nucleus, is a candidate for a chromatin condensation enzyme that is coupled to nuclear degradation.</p

    Health Justice Strategies to Combat the Pandemic: Eliminating Discrimination, Poverty, and Health Disparities During and After COVID-19

    Get PDF
    Experience with past epidemics made it predictable that people living in poverty, people of color, and other marginalized groups would bear the brunt of the coronavirus pandemic due to the social determinants of health (SDOH). The SDOH are subdivided into structural and intermediary determinants. Structural determinants include forms of subordination (discrimination and poverty) that influence intermediary determinants (health care, housing, and employment). The COVID-19 pandemic has magnified and accelerated the harms caused by these determinants, limiting health equity among historically marginalized groups and low-income populations. Black, Latino, and Indigenous populations have higher COVID-19 infection and mortality rates, higher rates of unemployment, less access to health care, and greater risk of eviction during the pandemic, among other significant inequities. Without robust and swift government interventions, the impacts of the pandemic will be wide and deep. This Article analyzes mechanisms of these determinants in the pandemic setting and provides solutions using the health justice framework. The health justice framework offers three principles: structural, supportive, and empowering. First, legal and policy responses must address the structural determinants of health. Second, interventions mandating healthy behaviors must be accompanied by material support and legal protections to enable compliance while minimizing harms. Third, historically marginalized communities must be engaged and empowered as leaders in the development and implementation of interventions and the attainment of health justice. To demonstrate the application of these principles, this Article focuses on two structural determinants of health (discrimination and poverty) and three intermediary determinants (health care, housing, and employment)

    Tobacco\u27s Minor Alkaloids: Effects on Place Conditioning and Nucleus Accumbens Dopamine Release in Adult and Adolescent Rats

    Get PDF
    Tobacco products are some of the most commonly used psychoactive drugs worldwide. Besides nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation of these constituents and their contribution to tobacco dependence is less well developed than for nicotine. The present study evaluated the nucleus accumbens dopamine-releasing properties and rewarding and/or aversive properties of nicotine (0.2-0.8 mg/kg), cotinine (0.5-5.0 mg/kg), anatabine (0.5-5.0 mg/kg), and myosmine (5.0-20.0 mg/kg) through in vivo microdialysis and place conditioning, respectively, in adult and adolescent male rats. Nicotine increased dopamine release at both ages, and anatabine and myosmine increased dopamine release in adults, but not adolescents. The dopamine release results were not related to place conditioning, as nicotine and cotinine had no effect on place conditioning, whereas anatabine and myosmine produced aversion in both ages. While the nucleus accumbens shell is hypothesized to play a role in strengthening drug-context associations following initiation of drug use, it may have little involvement in the motivational effects of tobacco constituents once these associations have been acquired. Effects of myosmine and anatabine on dopamine release may require a fully developed dopamine system, since no effects of these tobacco alkaloids were observed during adolescence. In summary, while anatabine and myosmine-induced dopamine release in nucleus accumbens may play a role in tobacco dependence in adults, the nature of that role remains to be elucidated

    Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Tetrahymena thermophila</it>, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of <it>Tetrahymena</it>'s coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing.</p> <p>Results</p> <p>We addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified.</p> <p>Conclusion</p> <p>We report here significant progress in genome closure and reannotation of <it>Tetrahymena thermophila</it>. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes.</p

    Who Invited You? The Complex Story Of Aquatic Invasive Species

    Get PDF
    Invasive species represent a global threat to ecosystems, human health, and the economy. A basic knowledge of invasive species biology is crucial to understand current and future impacts and implications. The purpose of this book is to provide a broad background on invasive species, and also details on specific examples through case studies. The students in the course Aquatic Invasive Species (MAR 442) at the University of New England in Biddeford, Maine, have researched and reviewed scientific literature to educate readers about these issues. The class, comprised of fifteen junior and senior Marine Science, Marine Affairs, Animal Behavior, and Environmental Sciences students, selected the different topics, presented the material, wrote the chapters, and assembled the final versions into this book. This book cannot be all inclusive, but we think this book will provide an excellent broad overview of the most important aspects of Invasive Species Biology and might stimulate the reader to dive deeper into the material.https://dune.une.edu/marinesci_studproj/1003/thumbnail.jp

    Psychology Meets Biology in COVID-19: What We Know and Why It Matters for Public Health

    Get PDF
    Psychosocial factors are related to immune, viral, and vaccination outcomes. Yet, this knowledge has been poorly represented in public health initiatives during the COVID-19 pandemic. This review provides an overview of biopsychosocial links relevant to COVID-19 outcomes by describing seminal evidence about these associations known prepandemic as well as contemporary research conducted during the pandemic. This focuses on the negative impact of the pandemic on psychosocial health and how this in turn has likely consequences for critically relevant viral and vaccination outcomes. We end by looking forward, highlighting the potential of psychosocial interventions that could be leveraged to support all people in navigating a postpandemic world and how a biopsychosocial approach to health could be incorporated into public health responses to future pandemics

    Phase I Hydroxylated Metabolites of the K2 Synthetic Cannabinoid JWH-018 Retain In Vitro and In Vivo Cannabinoid 1 Receptor Affinity and Activity

    Get PDF
    K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9)-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R).JWH-018, five potential monohydroxylated metabolites (M1-M5), and one carboxy metabolite (M6) were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3)H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35)S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i) values that were lower than or equivalent to Δ(9)-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9)-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9)-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9)-THC, may contribute to the greater prevalence of adverse effects observed with JWH-018-containing products relative to cannabis

    Decentralized clinical trials in the trial innovation network: Value, strategies, and lessons learned

    Get PDF
    New technologies and disruptions related to Coronavirus disease-2019 have led to expansion of decentralized approaches to clinical trials. Remote tools and methods hold promise for increasing trial efficiency and reducing burdens and barriers by facilitating participation outside of traditional clinical settings and taking studies directly to participants. The Trial Innovation Network, established in 2016 by the National Center for Advancing Clinical and Translational Science to address critical roadblocks in clinical research and accelerate the translational research process, has consulted on over 400 research study proposals to date. Its recommendations for decentralized approaches have included eConsent, participant-informed study design, remote intervention, study task reminders, social media recruitment, and return of results for participants. Some clinical trial elements have worked well when decentralized, while others, including remote recruitment and patient monitoring, need further refinement and assessment to determine their value. Partially decentralized, or “hybrid” trials, offer a first step to optimizing remote methods. Decentralized processes demonstrate potential to improve urban-rural diversity, but their impact on inclusion of racially and ethnically marginalized populations requires further study. To optimize inclusive participation in decentralized clinical trials, efforts must be made to build trust among marginalized communities, and to ensure access to remote technology
    corecore