5 research outputs found

    2023 EULAR recommendations on imaging in diagnosis and management of crystal-induced arthropathies in clinical practice.

    Get PDF
    To formulate evidence-based recommendations and overarching principles on the use of imaging in the clinical management of crystal-induced arthropathies (CiAs). An international task force of 25 rheumatologists, radiologists, methodologists, healthcare professionals and patient research partners from 11 countries was formed according to the EULAR standard operating procedures. Fourteen key questions on the role of imaging in the most common forms of CiA were generated. The CiA assessed included gout, calcium pyrophosphate deposition disease and basic calcium phosphate deposition disease. Imaging modalities included conventional radiography, ultrasound, CT and MRI. Experts applied research evidence obtained from four systematic literature reviews using MEDLINE, EMBASE and CENTRAL. Task force members provided level of agreement (LoA) anonymously by using a Numerical Rating Scale from 0 to 10. Five overarching principles and 10 recommendations were developed encompassing the role of imaging in various aspects of patient management: making a diagnosis of CiA, monitoring inflammation and damage, predicting outcome, response to treatment, guided interventions and patient education. Overall, the LoA for the recommendations was high (8.46-9.92). These are the first recommendations that encompass the major forms of CiA and guide the use of common imaging modalities in this disease group in clinical practice

    Phytochemical analysis of the hot tea infusion of Hedyosmum brasiliense

    No full text
    Abstract The leaves of the neotropical dioecious shrub Hedyosmum brasiliense (HB) are employed popularly as a sedative, aphrodisiac and as a substitute for green tea. The aim of this work was to study the composition of the hot tea infusion from the fresh leaves of HB, comparing its androecious or gynoecious parts, including the isolation and identification of new secondary metabolites. The characterization of the HB tea infusion was achieved by means of UHPLC-ESI(±)-HRMS and the isolation of its secondary metabolites was done through FCPC and MPLC. Both female and male plant extracts presented similar chemical profiles, with rosmarinic acid (RA) as the main compound. The FCPC analysis led to a one-step isolation of RA 97% pure. A new sesquiterpene lactone (1-α-acetoxyeudesma-3,7(11)-dien-8,12-olide) is reported herein for the first time. The additional compounds isolated and characterized by NMR and LC-MS are isorinic acid, a glycosylated flavonol, two neolignans reported for the first time for HB and three other sesquiterpene lactones which were previously isolated from the ethanol extract. Neither the extract nor its major constituent (RA) exhibited in-vitro antimycobacterial activity. © 2015 Elsevier Ltd

    A phase IIb, open-label, randomized controlled dose ranging multi-centre trial to evaluate the safety, tolerability, pharmacokinetics and exposure-response relationship of different doses of delpazolid in combination with bedaquiline delamanid moxifloxacin in adult subjects with newly diagnosed, uncomplicated, smear-positive, drug-sensitive pulmonary tuberculosis.

    No full text
    BACKGROUND: Linezolid is an effective, but toxic anti-tuberculosis drug that is currently recommended for the treatment of drug-resistant tuberculosis. Improved oxazolidinones should have a better safety profile, while preserving efficacy. Delpazolid is a novel oxazolidinone developed by LegoChem Biosciences Inc. that has been evaluated up to phase 2a clinical trials. Since oxazolidinone toxicity can occur late in treatment, LegoChem Biosciences Inc. and the PanACEA Consortium designed DECODE to be an innovative dose-ranging study with long-term follow-up for determining the exposure-response and exposure-toxicity relationship of delpazolid to support dose selection for later studies. Delpazolid is administered in combination with bedaquiline, delamanid and moxifloxacin. METHODS: Seventy-five participants with drug-sensitive, pulmonary tuberculosis will receive bedaquiline, delamanid and moxifloxacin, and will be randomized to delpazolid dosages of 0 mg, 400 mg, 800 mg, 1200 mg once daily, or 800 mg twice daily, for 16 weeks. The primary efficacy endpoint will be the rate of decline of bacterial load on treatment, measured by MGIT liquid culture time to detection from weekly sputum cultures. The primary safety endpoint will be the proportion of oxazolidinone class toxicities; neuropathy, myelosuppression, or tyramine pressor response. Participants who convert to negative liquid media culture by week 8 will stop treatment after the end of their 16-week course and will be observed for relapse until week 52. Participants who do not convert to negative culture will receive continuation phase treatment with rifampicin and isoniazid to complete a six-month treatment course. DISCUSSION: DECODE is an innovative dose-finding trial, designed to support exposure-response modelling for safe and effective dose selection. The trial design allows assessment of occurrence of late toxicities as observed with linezolid, which is necessary in clinical evaluation of novel oxazolidinones. The primary efficacy endpoint is the change in bacterial load, an endpoint conventionally used in shorter dose-finding trials. Long-term follow-up after shortened treatment is possible through a safety rule excluding slow-and non-responders from potentially poorly performing dosages. TRIAL REGISTRATION: DECODE was registered in ClinicalTrials.gov before recruitment start on 22 October 2021 (NCT04550832)

    Storage ring at HIE-ISOLDE: technical design report

    Get PDF
    We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to setup the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams that is unique in the world. The envisaged physics programme is rich and varied, spanning from investigations of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. The TSR might also be employed for removal of isobaric contaminants from stored ion beams and for systematic studies within the neutrino beam programme. In addition to experiments performed using beams recirculating within the ring, cooled beams can also be extracted and exploited by external spectrometers for high-precision measurements. The existing TSR, which is presently in operation at the Max-Planck Institute for Nuclear Physics in Heidelberg, is well-suited and can be employed for this purpose. The physics cases as well as technical details of the existing ring facility and of the beam and infrastructure requirements at HIE-ISOLDE are discussed in the present technical design report
    corecore