168 research outputs found

    Exploring the length scales, timescales and chemistry of challenging materials (Part 2).

    Get PDF
    This themed issue explores the different length and timescales that determine the physics and chemistry of a variety of key of materials, explored from the perspective of a wide range of disciplines, including physics, chemistry materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with this second set of contributions exploring hybrid organic materials, catalysis low-dimensional and graphitic materials, biological materials and naturally occurring, super-hard material as well as dynamic high pressure and new developments in imaging techniques pressure. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'

    Exploring the length scales, timescales and chemistry of challenging materials (Part 1).

    Get PDF
    This themed issue explores the different length scales and timescales that determine the physics and chemistry of a variety of key materials, explored from the perspective of a wide range of disciplines, including physics, chemistry, materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with the present part exploring glassy and amorphous systems and materials at high pressure. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'

    NSAID prescribing and adverse outcomes in common infections: a population-based cohort study.

    Get PDF
    OBJECTIVES: Infections in primary care are often treated with non-steroidal anti-inflammatory drugs (NSAIDs). This study evaluates whether NSAID prescribing is associated with adverse outcomes for respiratory (RTIs) or urinary track (UTI) infections. OBJECTIVES: To determine whether there is an association between NSAID prescribing and the rate of adverse outcomes for infections for individual consulting in primary care. DESIGN: Cohort study of electronic health records. SETTING: 87 general practices in the UK Clinical Practice Research Datalink GOLD. PARTICIPANTS: 142 925 patients consulting with RTI or UTI. PRIMARY AND SECONDARY OUTCOME MEASURES: Repeat consultations, hospitalisation or death within 30 days of the initial consultation for RTI or UTI. Poisson models estimated the associations between NSAID exposure and outcome. Rate ratios were adjusted for gender, age, ethnicity, deprivation, antibiotic use, seasonal influenza vaccination status, comorbidities and general practice. Since prescribing variations by practice are not explained by case mix-hence, less impacted by confounding by indication-both individual-level and practice-level analyses are included. RESULTS: There was an increase in hospital admission/death for acute NSAID prescriptions (RR 2.73, 95% CI 2.10 to 3.56) and repeated NSAID prescriptions (6.47, 4.46-9.39) in RTI patients, and for acute NSAID prescriptions for UTI (RR 3.03; 1.92 to 4.76). Practice-level analysis, controlling for practice population characteristics, found that for each percentage point increase in NSAID prescription, the percentages of hospital admission/death within 30 days increased by 0.32 percentage points (95% CI 0.16 to 0.47). CONCLUSIONS: In this non-randomised study, prescription of NSAIDs at consultations for RTI or UTIs in primary care is infrequent but may be associated with increased risk of hospital admission. This supports other observational and limited trial data that NSAID prescribing might be associated with worse outcomes following acute infection and should be prescribed with caution

    Formation of an ion-free crystalline carbon nitride and its reversible intercalation with ionic species and molecular water

    Get PDF
    The development of processes to tune the properties of materials is essential for the progression of nextgeneration technologies for catalysis, optoelectronics and sustainability including energy harvesting and conversion. Layered carbon nitrides have also been identified as of significant interest within these fields of application. However, most carbon nitride materials studied to date have poor crystallinity and therefore their properties cannot be readily controlled or easily related to their molecular level or nanoscale structures. Here we report a process for forming a range of crystalline layered carbon nitrides with polytriazine imide (PTI) structures that can be interconverted by simple ion exchange processes, permitting the tunability of their optoelectronic and chemical properties. Notable outcomes of our work are (a) the creation of a crystalline, guest-ion-free PTI compound that (b) can be re-intercalated with ions or molecules using β€œsoft chemistry” approaches. This includes the intercalation of HCl, demonstrating a new ambient pressure route to the layered PTI$xHCl material that was previously only available by a high-pressure-high-temperature route (c). Our work also shows (d) that the intercalantfree (IF-) PTI material spontaneously absorbs up to 10 weight% H2O from the ambient atmosphere and that this process is reversible, leading to potential applications for membranes and water capture in dry environment

    Effect of Levels of Acetate on the Mevalonate Pathway of Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi, the agent of Lyme disease, is a spirochetal pathogen with limited metabolic capabilities that survives under highly disparate host-specific conditions. However, the borrelial genome encodes several proteins of the mevalonate pathway (MP) that utilizes acetyl-CoA as a substrate leading to intermediate metabolites critical for biogenesis of peptidoglycan and post-translational modifications of proteins. In this study, we analyzed the MP and contributions of acetate in modulation of adaptive responses in B. burgdorferi. Reverse-transcription PCR revealed that components of the MP are transcribed as individual open reading frames. Immunoblot analysis using monospecific sera confirmed synthesis of members of the MP in B. burgdorferi. The rate-limiting step of the MP is mediated by HMG-CoA reductase (HMGR) via conversion of HMG-CoA to mevalonate. Recombinant borrelial HMGR exhibited a Km value of 132 Β΅M with a Vmax of 1.94 Β΅mol NADPH oxidized minuteβˆ’1 (mg protein)βˆ’1 and was inhibited by statins. Total protein lysates from two different infectious, clonal isolates of B. burgdorferi grown under conditions that mimicked fed-ticks (pH 6.8/37Β°C) exhibited increased levels of HMGR while other members of the MP were elevated under unfed-tick (pH 7.6/23Β°C) conditions. Increased extra-cellular acetate gave rise to elevated levels of MP proteins along with RpoS, CsrABb and their respective regulons responsible for mediating vertebrate host-specific adaptation. Both lactone and acid forms of two different statins inhibited growth of B. burgdorferi strain B31, while overexpression of HMGR was able to partially overcome that inhibition. In summary, these studies on MP and contributions of acetate to host-specific adaptation have helped identify potential metabolic targets that can be manipulated to reduce the incidence of Lyme disease

    Genetic diversity of the African malaria vector Anopheles gambiae

    Get PDF
    The sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in Anopheles mosquitoes, which transmit the disease1. To gain a deeper understanding of how mosquito populations are evolving, here we sequenced the genomes of 765 specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa, and identified over 50 million single nucleotide polymorphisms within the accessible genome. These data revealed complex population structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and local variation in effective population size. Strong signals of recent selection were observed in insecticide-resistance genes, with several sweeps spreading over large geographical distances and between species. The design of new tools for mosquito control using gene-drive systems will need to take account of high levels of genetic diversity in natural mosquito populations

    Entropy-driven liquid-liquid separation in supercooled water

    Full text link
    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water at low temperatures is viewed as an 'athermal solution' of two molecular structures with different entropies and densities. Alternatively to popular models for water, in which the liquid-liquid separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy upon increasing the pressure, while the critical temperature is defined by the 'reaction' equilibrium constant. In particular, the model predicts the location of density maxima at the locus of a near-constant fraction (about 0.12) of the lower-density structure.Comment: 7 pages, 6 figures. Version 2 contains an additional supplement with tables for the mean-field equatio

    An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    Get PDF
    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid-based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids

    H2AX phosphorylation screen of cells from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype

    Get PDF
    BACKGROUND: About 1-5% of cancer patients suffer from significant normal tissue reactions as a result of radiotherapy (RT). It is not possible at this time to predict how most patients' normal tissues will respond to RT. DNA repair dysfunction is implicated in sensitivity to RT particularly in genes that mediate the repair of DNA double-strand breaks (DSBs). Phosphorylation of histone H2AX (phosphorylated molecules are known as gammaH2AX) occurs rapidly in response to DNA DSBs, and, among its other roles, contributes to repair protein recruitment to these damaged sites. Mammalian cell lines have also been crucial in facilitating the successful cloning of many DNA DSB repair genes; yet, very few mutant cell lines exist for non-syndromic clinical radiosensitivity (RS).\ud \ud METHODS: Here, we survey DNA DSB induction and repair in whole cells from RS patients, as revealed by gammaH2AX foci assays, as potential predictive markers of clinical radiation response.\ud \ud RESULTS: With one exception, both DNA focus induction and repair in cell lines from RS patients were comparable with controls. Using gammaH2AX foci assays, we identified a RS cancer patient cell line with a novel ionising radiation-induced DNA DSB repair defect; these data were confirmed by an independent DNA DSB repair assay.\ud \ud CONCLUSION: gammaH2AX focus measurement has limited scope as a pre-RT predictive assay in lymphoblast cell lines from RT patients; however, the assay can successfully identify novel DNA DSB repair-defective patient cell lines, thus potentially facilitating the discovery of novel constitutional contributions to clinical RS
    • …
    corecore