85 research outputs found

    Strong violations of Bell-type inequalities for Werner-like states

    Full text link
    We investigate the violation of Bell-type inequalities for two-qubit Werner-like states parametrized by the positive parameter 0<p<1. We use an unbalanced homodyne detection scheme to obtain the quantum mechanical probabilities. A violation of the Bell-Wigner and Janssens inequalities is obtained for a large range of the parameter p. The range given by these inequalities is greater than the one given by the Clauser-Horne inequality. The range in which a violation is attained actually coincides with the range where the Werner-like states are known to be nonseparabel, i.e., for p>1/3. However, the improvement over the Clauser-Horne inequality is achieved at the price of restricting the class of possible local hidden variable theories.Comment: Revised manuscript, accepted for publication in PR

    Enhancing image contrast using coherent states and photon number resolving detectors

    Full text link
    We experimentally map the transverse profile of diffraction-limited beams using photon-number-resolving detectors. We observe strong compression of diffracted beam profiles for high detected photon number. This effect leads to higher contrast than a conventional irradiance profile between two Airy disk-beams separated by the Rayleigh criterion.Comment: 7 pages, 3 figures, accepted for publication in Optics Expres

    Generation of Entangled N-Photon States in a Two-Mode Jaynes-Cummings Model

    Full text link
    We describe a mathematical solution for the generation of entangled N-photon states in two field modes. A simple and compact solution is presented for a two-mode Jaynes-Cummings model by combining the two field modes in a way that only one of the two resulting quasi-modes enters in the interaction term. The formalism developed is then applied to calculate various generation probabilities analytically. We show that entanglement, starting from an initial field and an atom in one defined state may be obtained in a single step. We also show that entanglement may be built up in the case of an empty cavity and excited atoms whose final states are detected, as well as in the case when the final states of the initially excited atoms are not detected.Comment: v2: 5 pages, RevTeX4, minor text changes + 1 figure added, revised version to be published in PRA, May 200

    Entangled Fock states for Robust Quantum Optical Metrology, Imaging, and Sensing

    Full text link
    We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and sensing in the presence of loss. We model propagation loss with beam-splitters and derive a reduced density matrix formalism from which we examine how photon loss affects coherence. It is shown that particular entangled number states, which contain a special superposition of photons in both arms of a Mach-Zehnder interferometer, are resilient to environmental decoherence. We demonstrate an order of magnitude greater visibility with loss, than possible with N00N states. We also show that the effectiveness of a detection scheme is related to super-resolution visibility.Comment: 4 pages, 5 figures, extended introduction and minor revision

    Qualitative aspects of entanglement in the Jaynes-Cummings model with an external quantum field

    Full text link
    We present a mathematical procedure which leads us to obtain analytical solutions for the atomic inversion and Wigner function in the framework of the Jaynes-Cummings model with an external quantum field, for any kinds of cavity and driving fields. Such solutions are expressed in the integral form, with their integrands having a commom term that describes the product of the Glauber-Sudarshan quasiprobability distribution functions for each field, and a kernel responsible for the entanglement. Considering two specific initial states of the tripartite system, the formalism is then applied to calculate the atomic inversion and Wigner function where, in particular, we show how the detuning and amplitude of the driving field modify the entanglement. In addition, we also obtain the correctComment: 15 pages and 21 figure

    Qubit portrait of the photon-number tomogram and separability of two-mode light states

    Full text link
    In view of the photon-number tomograms of two-mode light states, using the qubit-portrait method for studying the probability distributions with infinite outputs, the separability and entanglement detection of the states are studied. Examples of entangled Gaussian state and Schr\"{o}dinger cat state are discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser Researc

    Rapid Sampling of Molecules via Skin for Diagnostic and Forensic Applications

    Get PDF
    Skin provides an excellent portal for diagnostic monitoring of a variety of entities; however, there is a dearth of reliable methods for patient-friendly sampling of skin constituents. This study describes the use of low-frequency ultrasound as a one-step methodology for rapid sampling of molecules from the skin. Sampling was performed using a brief exposure of 20 kHz ultrasound to skin in the presence of a sampling fluid. In vitro sampling from porcine skin was performed to assess the effectiveness of the method and its ability to sample drugs and endogenous epidermal biomolecules from the skin. Dermal presence of an antifungal drug—fluconazole and an abused substance, cocaine—was assessed in rats. Ultrasonic sampling captured the native profile of various naturally occurring moisturizing factors in skin. A high sampling efficiency (79 ± 13%) of topically delivered drug was achieved. Ultrasound consistently sampled greater amounts of drug from the skin compared to tape stripping. Ultrasonic sampling also detected sustained presence of cocaine in rat skin for up to 7 days as compared to its rapid disappearance from the urine. Ultrasonic sampling provides significant advantages including enhanced sampling from deeper layers of skin and high temporal sampling sensitivity
    • …
    corecore