19 research outputs found

    Evaluating the use of marine protected areas by endangered species: A habitat selection approach

    Get PDF
    1. Optimizing the design of marine protected area (MPA) networks for the conservation of migratory marine species and their habitats involves a suite of important considerations, such as appropriate scale requirements and the distribution of anthropogenic impacts. Often, a fundamental component of the conservation planning process is delineating areas of high use or high biodiversity within a region of interest. 2. However, basing conservation strategies off merely the number of individuals in an ecosystem is outdated and potentially subject to arbitrary thresholds. To be effective at protecting marine megafauna, MPAs would ideally encompass habitats used by focal species. Through satellite-tracking studies, evidence of whether species actually use protected areas is emerging. 3. Here, we present a multispecies perspective on habitat selection within existing MPAs throughout the Floridian ecoregion, which encompasses coastal Florida and the Gulf of Mexico. Using an 11-year satellite-tracking dataset on 235 marine turtles, we used integrated step selection analysis to quantify the effects of sea turtle behavioural state (identified by a switching state-space model), protected area status, chlorophyll and bathymetry on habitat selection. 4. Our results show that sea turtles do select for existing protected areas, specifically multi-use zones, while controlling for the effects of depth and primary productivity. However, our analysis revealed that turtles showed no selection for the no-take zones within MPAs, during either transiting or foraging. 5. These findings contribute to the existing literature base of MPA use for highly mobile, imperilled species and could inform management of existing MPAs or changes to zoning, specifically multi-use to no-take. Our use of a robust spatial modelling framework to evaluate habitat selection relative to MPAs could be incorporated into conservation planning to build MPA networks designed to accommodate migratory species

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location Global. Methods We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU

    Translating Marine Animal Tracking Data into Conservation Policy and Management

    Get PDF
    There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is however difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; Perú. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimánFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; Turquía. Ecological Research Society; TurquíaFil: Casale, Paolo. Università degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: González Carman, Victoria. Instituto National de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; México. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MéxicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; Turquía. Pamukkale Üniversitesi; TurquíaFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, César P.. Instituto Politécnico Nacional; MéxicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: López-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. Università degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. Università Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. Fundación Oceanogràfic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto Politécnico Nacional; MéxicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; Turquía. Pamukkale University; TurquíaFil: Tomás, Jesús. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MéxicoFil: Halpin, Patrick N.. University of Duke; Estados Unido

    Optimising sample sizes for animal distribution analysis using tracking data

    No full text
    Knowledge of the spatial distribution of populations is fundamental to management plans for any species. When tracking data are used to describe distributions, it is sometimes assumed that the reported locations of individuals delineate the spatial extent of areas used by the target population. Here we examine existing approaches to validate this assumption, highlight caveats, and propose a new method for a more informative assessment of the number of tracked animals (i.e. sample size) necessary to identify distribution patterns. We show how this assessment can be achieved by considering the heterogeneous use of habitats by a target species using the probabilistic property of a utilisation distribution. Our methods are compiled in the r package SDLfilter. We illustrate and compare the protocols underlying existing and new methods using conceptual models and demonstrate an application of our approach using a large satellite tracking dataset of flatback turtles Natator depressus tagged with accurate Fastloc‐GPS tags (n = 69). Our approach has applicability for the post hoc validation of sample sizes required for the robust estimation of distribution patterns across a wide range of taxa, populations and life‐history stages of animals

    Sources and movements of marine turtles in the Gulf of Venezuela: regional and local assessments

    No full text
    Marine turtles are challenging species to protect because they occur over large geographic scales. Tagging individual turtles at nesting beaches and foraging areas, and the resulting mark-recapture data sets have gradually enabled us to understand marine turtle migratory behaviour and dispersal. Within the Caribbean region, several turtle tagging projects have led to longer-term evaluations and assessments of connectivity. Thus, marine turtle mark-recapture data is important for developing conservation strategies at regional-scale. In this study, we analyse turtle tagging data from the Gulf of Venezuela to determine regional (Caribbean and Atlantic geographic level) and local (within the Gulf of Venezuela) links. To achieve this, we retrieved, compiled, and analysed multiple databases with records of marine turtles that were tagged and then recaptured in the Gulf of Venezuela. Sixty-six tag return records were evaluated, 43 from animals initially tagged outside of the Gulf of Venezuela and then recaptured inside, plus 23 records retrieved from turtles that were tagged and recaptured within the Gulf of Venezuela. We found evidence of connectivity between 12 different locations where initial tagging events occurred, eight from other feeding areas and four from nesting beaches. We described four different movement patterns for 23 turtles tagged and re-captured within the Gulf of Venezuela. Most of the recapture records we obtained occurred after the turtles were known, or presumed, to have been killed by local fishers. Hence, knowing patterns of dispersal and connectivity are crucial to improving local and regional conservation and threat mitigation

    Informing research priorities for immature sea turtles through expert elicitation

    No full text
    Although sea turtles have received substantial focus worldwide, research on the immature life stages is still relatively limited. The latter is of particular importance, given that a large proportion of sea turtle populations comprises immature individuals. We set out to identify knowledge gaps and identify the main barriers hindering research in this field. We analyzed the perceptions of sea turtle experts through an online survey which gathered their opinions on the current state of affairs on immature sea turtle research, including species and regions in need of further study, priority research questions, and barriers that have interfered with the advancement of research. Our gap analysis indicates that studies on immature leatherback Dermochelys coriacea and hawksbill Eretmochelys imbricata turtles are lacking, as are studies on all species based in the Indian, South Pacific, and South Atlantic Oceans. Experts also perceived that studies in population ecology, namely on survivorship and demography, and habitat use/behavior, are needed to advance the state of knowledge on immature sea turtles. Our survey findings indicate the need for more interdisciplinary research, collaborative efforts (e.g. data-sharing, joint field activities), and improved communication among researchers, funding bodies, stakeholders, and decision-makers
    corecore