201 research outputs found

    Physical, Chemical and Sensory Properties of Baked Products from Blends of Wheat and African Yam Bean (Sphenostylis stenocarpa) Water-Extractable Proteins

    Get PDF
    ABSTRACTBlends of wheat flour (WF) and African yam bean water-extractable proteins (AYBWEP) were processed into bread and cookies in the following ratios: 100: 0; 95: 5; 90: 10; 85: 15; 80: 20. The proximate composition, physical, chemical properties and sensory properties of bread and cookies samples from the blends were determined. Breads and cookies produced from the resultant blends were significantly higher (p<0.05) in protein (16.39% – 18.36%) than the control (11.80% – 12.58%). Carbohydrate content decreased from 60.74% with addition of AYBWEP to 52.81% following 20% substitution. The pH of bread samples prepared from whole wheat flour and blends of wheat flour and AYBWEP were significantly different (p<0.05) while bulk density and specific volume were not significantly different (p>0.05). The pH of bread samples and cookies decreased with increase in the proportion of the AYBWEP blend from 5% to 20%. The highest specific volume (3.70ml/g) was observed in bread samples prepared from the control 100: 0 blends while the 80:20 blends had the lowest specific volume (3.10ml/g). There was no significant difference (p>0.05) in the bulk density and thickness of the cookies. The cookies prepared using 80: 20 blends had the higher diameter (22.53cm) and spread factor (54.03cm) compared to the control. Generally, acceptability of the bread and cookies decreased with higher ratios of AYBWEP inclusion. The sensory acceptability scores showed the best AYBWEP substitution level for making bread and cookies was 5% and 10% of the AYBWEP respectively. The results are discussed in the context of the growing importance of promoting the processing and utilization of lesser known local crops in baked products.enrichment

    Genotype and clinical characteristics of congenital long QT syndrome in Thailand.

    Get PDF
    Congenital long QT syndrome (LQTS) is an inheritable arrhythmic disorder which is linked to at least 17 genes. The clinical characteristics and genetic mutations may be variable among different population groups and they have not yet been studied in Thai population. Clinical characteristics were retrospectively reviewed from children and young adults with congenital long QT syndrome whose blood samples were sent for genotyping during 1998-2017. Sangers sequencing was used to sequentially identify KCNQ1 or KCNH2 genetic variants. Whole exome sequencing (WES) was used to identify variants in all other known LQTS genes. Of the 20 subjects (17 families), 45% were male, mean QTc was 550.3 ± 68.8 msec (range 470-731 msec) and total Schwartz's score was 5.6 ± 1.2 points (range 3-8 points). Fifty percent of patients had events at rest, 30% had symptoms after adrenergic mediated events, and 20% were asymptomatic. We discovered pathogenic and likely pathogenic genetic variants in KCNQ1, KCNH2, and SCN5A in 6 (35%), 4 (24%), and 2 (12%) families, respectively. One additional patient had variance of unknown significance (VUS) in KCNH2 and another one in ANK2. No pathogenic genetic variant was found in 3 patients (18%). Most patients received beta-blocker and 9 (45%) had ICD implanted. LQT1 patients were either asymptomatic or had stress-induced arrhythmia. Most of the LQT2 and LQT3 patients developed symptoms at rest or during sleep. Our patients with LQTS were mostly symptomatic at presentation. The genetic mutations were predominantly in LQT1, LQT2, and LQT3 genes

    Early Mechanical Alterations in Phospholamban Mutation Carriers: Identifying Subclinical Disease Before Onset of Symptoms

    Get PDF
    OBJECTIVES: This study aimed to explore echocardiographic characteristics of phospholamban (PLN) p.Arg14del mutation carriers to investigate whether structural and/or functional abnormalities could be identified before onset of symptoms. BACKGROUND: Carriers of the genetic PLN p.Arg14del mutation may develop arrhythmogenic and/or dilated cardiomyopathy. Overt disease is preceded by a pre-symptomatic phase of variable length in which disease expression seems to be absent. METHODS: PLN p.Arg14del mutation carriers with an available echocardiogram were included. Mutation carriers were classified as pre-symptomatic if they had no history of ventricular arrhythmias (VAs), a premature ventricular complex count of <500/24 h, and a left ventricular (LV) ejection fraction of ≥45%. In addition, we included 70 control subjects with similar age and sex distribution as the pre-symptomatic mutation carriers. Comprehensive echocardiographic analysis (including deformation imaging) was performed. RESULTS: The final study population consisted of 281 PLN p.Arg14del mutation carriers, 139 of whom were classified as pre-symptomatic. In comparison to control subjects, pre-symptomatic mutation carriers had lower global longitudinal strain and higher LV mechanical dispersion (both p < 0.001). In addition, post-systolic shortening (PSS) in the LV apex was observed in 43 pre-symptomatic mutation carriers (31%) and in none of the control subjects. During a median follow-up of 3.2 years (interquartile range: 2.1 to 5.6 years) in 104 pre-symptomatic mutation carriers, nonsustained VA occurred in 13 (13%). Presence of apical PSS was the strongest echocardiographic predictor of VA (multivariable hazards ratio: 5.11; 95% confidence interval [CI]: 1.37 to 19.08; p = 0.015), which resulted in a negative predictive value of 96% (95% CI: 89% to 98%) and a positive predictive value of 29% (95% CI: 21% to 40%). CONCLUSIONS: Global and regional LV mechanical alterations in PLN p.Arg14del mutation carriers precede arrhythmic symptoms and overt structural disease. Pre-symptomatic mutation carriers with normal deformation patterns in the apex are at low risk of developing VA within 3 years, whereas mutation carriers with apical PSS appear to be at higher risk

    Subepicardial Cardiomyopathy: A Disease Underlying J-Wave Syndromes and Idiopathic Ventricular Fibrillation.

    Get PDF
    Brugada syndrome (BrS), early repolarization syndrome (ERS), and idiopathic ventricular fibrillation (iVF) have long been considered primary electrical disorders associated with malignant ventricular arrhythmia and sudden cardiac death. However, recent studies have revealed the presence of subtle microstructural abnormalities of the extracellular matrix in some cases of BrS, ERS, and iVF, particularly within right ventricular subepicardial myocardium. Substrate-based ablation within this region has been shown to ameliorate the electrocardiographic phenotype and to reduce arrhythmia frequency in BrS. Patients with ERS and iVF may also exhibit low-voltage and fractionated electrograms in the ventricular subepicardial myocardium, which can be treated with ablation. A significant proportion of patients with BrS and ERS, as well as some iVF survivors, harbor pathogenic variants in the voltage-gated sodium channel gene, SCN5A, but the majority of genetic susceptibility of these disorders is likely to be polygenic. Here, we postulate that BrS, ERS, and iVF may form part of a spectrum of subtle subepicardial cardiomyopathy. We propose that impaired sodium current, along with genetic and environmental susceptibility, precipitates a reduction in epicardial conduction reserve, facilitating current-to-load mismatch at sites of structural discontinuity, giving rise to electrocardiographic changes and the arrhythmogenic substrate

    Next-generation sequencing using microfluidic PCR enrichment for molecular autopsy.

    Get PDF
    BACKGROUND: We aimed to determine the mutation yield and clinical applicability of "molecular autopsy" following sudden arrhythmic death syndrome (SADS) by validating and utilizing low-cost high-throughput technologies: Fluidigm Access Array PCR-enrichment with Illumina HiSeq 2000 next generation sequencing (NGS). METHODS: We validated and optimized the NGS platform with a subset of 46 patients by comparison with Sanger sequencing of coding exons of major arrhythmia risk-genes (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, RYR2). A combined large multi-ethnic international SADS cohort was sequenced utilizing the NGS platform to determine overall molecular yield; rare variants identified by NGS were subsequently reconfirmed by Sanger sequencing. RESULTS: The NGS platform demonstrated 100% sensitivity for pathogenic variants as well as 87.20% sensitivity and 99.99% specificity for all substitutions (optimization subset, n = 46). The positive predictive value (PPV) for NGS for rare substitutions was 16.0% (27 confirmed rare variants of 169 positive NGS calls in 151 additional cases). The overall molecular yield in 197 multi-ethnic SADS cases (mean age 22.6 ± 14.4 years, 68% male) was 5.1% (95% confidence interval 2.0-8.1%), representing 10 cases carrying pathogenic or likely pathogenic risk-mutations. CONCLUSIONS: Molecular autopsy with Fluidigm Access Array and Illumina HiSeq NGS utilizing a selected panel of LQTS/BrS and CPVT risk-genes offers moderate diagnostic yield, albeit requiring confirmatory Sanger-sequencing of mutational variants

    Autosomal recessive long QT syndrome, type 1 in eight families from Saudi Arabia.

    Get PDF
    One of the most common primary cardiac arrhythmia syndromes is autosomal dominant long QT syndrome, type 1 (LQT1), chiefly caused by mono-allelic mutations in the javax.xml.bind.JAXBElement@1ece3341 gene. Bi-allelic mutations in the javax.xml.bind.JAXBElement@7269232c gene are causal to Jervell and Lange-Nielsen syndrome (JLNS), characterized by severe and early-onset arrhythmias with prolonged QTc interval on surface ECG and sensorineural deafness. Occasionally, bi-allelic mutations in javax.xml.bind.JAXBElement@2001e7dc are also found in patients without any deafness, referred to as autosomal recessive long QT syndrome, type 1 (AR LQT1). We used Sanger sequencing to detect the pathogenic mutations in javax.xml.bind.JAXBElement@4f6526ea gene in eight families from Saudi Arabia with autosomal recessive LQT1. We have detected pathogenic mutations in all eight families, two of the mutations are founder mutations, which are c.387-5T&gt;A and p.Val172Met/p.Arg293Cys ( javax.xml.bind.JAXBElement@205e407c ). QTc and cardiac phenotype was found to be pronounced in all the probands comparable to the cardiac phenotype in JLNS patients. Heterozygous carriers for these mutations did not exhibit any clinical phenotype, but a significant number of them have sinus bradycardia. To the best of our knowledge, this is the first description of a large series of patients with familial autosomal recessive LQT, type 1. These mutations could be used for targeted screening in cardiac arrhythmia patients in Saudi Arabia and in people of Arabic ancestry

    Circulating Acylcarnitines Associated with Hypertrophic Cardiomyopathy Severity: an Exploratory Cross-Sectional Study in MYBPC3 Founder Variant Carriers

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a relatively common genetic heart disease characterised by myocardial hypertrophy. HCM can cause outflow tract obstruction, sudden cardiac death and heart failure, but severity is highly variable. In this exploratory cross-sectional study, circulating acylcarnitines were assessed as potential biomarkers in 124 MYBPC3 founder variant carriers (59 with severe HCM, 26 with mild HCM and 39 phenotype-negative [G + P-]). Elastic net logistic regression identified eight acylcarnitines associated with HCM severity. C3, C4, C6-DC, C8:1, C16, C18 and C18:2 were significantly increased in severe HCM compared to G + P-, and C3, C6-DC, C8:1 and C18 in mild HCM compared to G + P-. In multivariable linear regression, C6-DC and C8:1 correlated to log-transformed maximum wall thickness (coefficient 5.01, p = 0.005 and coefficient 0.803, p = 0.007, respectively), and C6-DC to log-transformed ejection fraction (coefficient -2.50, p = 0.004). Acylcarnitines seem promising biomarkers for HCM severity, however prospective studies are required to determine their prognostic value

    BIO FOr CARE: biomarkers of hypertrophic cardiomyopathy development and progression in carriers of Dutch founder truncating MYBPC3 variants-design and status

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by truncating variants in the MYBPC3 gene. HCM is an important cause of sudden cardiac death; however, overall prognosis is good and penetrance in genotype-positive individuals is incomplete. The underlying mechanisms are poorly understood and risk stratification remains limited. AIM: To create a nationwide cohort of carriers of truncating MYBPC3 variants for identification of predictive biomarkers for HCM development and progression. METHODS: In the multicentre, observational BIO FOr CARe (Identification of BIOmarkers of hypertrophic cardiomyopathy development and progression in Dutch MYBPC3 FOunder variant CARriers) cohort, carriers of the c.2373dupG, c.2827C > T, c.2864_2865delCT and c.3776delA MYBPC3 variants are included and prospectively undergo longitudinal blood collection. Clinical data are collected from first presentation onwards. The primary outcome constitutes a composite endpoint of HCM progression (maximum wall thickness ≥ 20 mm, septal reduction therapy, heart failure occurrence, sustained ventricular arrhythmia and sudden cardiac death). RESULTS: So far, 250 subjects (median age 54.9 years (interquartile range 43.3, 66.6), 54.8% male) have been included. HCM was diagnosed in 169 subjects and dilated cardiomyopathy in 4. The primary outcome was met in 115 subjects. Blood samples were collected from 131 subjects. CONCLUSION: BIO FOr CARe is a genetically homogeneous, phenotypically heterogeneous cohort incorporating a clinical data registry and longitudinal blood collection. This provides a unique opportunity to study biomarkers for HCM development and prognosis. The established infrastructure can be extended to study other genetic variants. Other centres are invited to join our consortium

    Exercise does not influence development of phenotype in PLN p.(Arg14del) cardiomyopathy

    Get PDF
    BACKGROUND: Endurance and frequent exercise are associated with earlier onset of arrhythmogenic right ventricular cardiomyopathy (ARVC) and ventricular arrhythmias (VA) in desmosomal gene variant carriers. Individuals with the pathogenic c.40_42del; p.(Arg14del) variant in the PLN gene are frequently diagnosed with ARVC or dilated cardiomyopathy (DCM). The aim of this study was to evaluate the effect of exercise in PLN p.(Arg14del) carriers. METHODS: In total, 207 adult PLN p.(Arg14del) carriers (39.1% male; mean age 53 ± 15 years) were interviewed on their regular physical activity since the age of 10 years. The association of exercise with diagnosis of ARVC, DCM, sustained VA and hospitalisation for heart failure (HF) was studied. RESULTS: Individuals participated in regular physical activities with a median of 1661 metabolic equivalent of task (MET) hours per year (31.9 MET-hours per week) until clinical presentation. The 50% most and least active individuals had a similar frequency of sustained VA (18.3% vs 18.4%; p = 0.974) and hospitalisation for HF (9.6% vs 8.7%; p = 0.827). There was no relationship between exercise and survival free from (incident) sustained VA (p = 0.65), hospitalisation for HF (p = 0.81), diagnosis of ARVC (p = 0.67) or DCM (p = 0.39) during follow-up. In multivariate analyses, exercise was not associated with sustained VA or HF hospitalisation during follow-up in this relatively not-active cohort. CONCLUSION: There was no association between the amount of exercise and the susceptibility to develop ARVC, DCM, VA or HF in PLN p.(Arg14del) carriers. This suggested unaffected PLN p.(Arg14del) carriers can safely perform mild-moderate exercise, in contrast to desmosomal variant carriers and ARVC patients

    Recurrent and Founder Mutations in the Netherlands: the Long-QT Syndrome

    Get PDF
    Background and objective The long-QT syndrome (LQTS) is associated with premature sudden cardiac deaths affecting whole families and is caused by mutations in genes encoding for cardiac proteins. When the same mutation is found in different families (recurrent mutations), this may imply either a common ancestor (founder) or multiple de novo mutations. We aimed to review recurrent mutations in patients with LQTS. Methods By use of our databases, we investigated the number of mutations that were found recurrently (at least three times) in LQT type 1-3 patients in the Netherlands. We studied familial links in the apparently unrelated probands, and we visualised the geographical distribution of these probands. Our results were compared with published literature of founder effects in LQTS outside the Netherlands. Results We counted 14 recurrent LQT mutations in the Netherlands. There are 326 identified carriers of one of these mutations. For three of these mutations, familial links were found between apparently unrelated probands. Conclusion Whereas true LQT founder mutations are described elsewhere in the world, we cannot yet demonstrate a real founder effect of these recurrent mutations in the Netherlands. Further studies on the prevalence of these mutations are indicated, and haplotype-sharing of the mutation carriers is pertinent to provide more evidence for founder mutation-based LQTS pathology in our countr
    corecore