1,838 research outputs found

    Tackling Challenges in Seebeck Coefficient Measurement of Ultra-High Resistance Samples with an AC Technique

    Get PDF
    Seebeck coefficient is a widely studied semiconductor property. Conventional Seebeck coefficient measurements are based on DC voltage measurement. Normally this is performed on samples with moderate resistances (e.g., below a few MΩ level). Certain semiconductors are intrinsic and highly resistive. Many examples can be found in optical and photovoltaic materials. The hybrid halide perovskites that have gained extensive attention recently are a good example. Despite great attention from the materials and physics communities, few successful studies exist of the Seebeck coefficient of these compounds, for example CH3NH3PbI3. An AC-technique-based Seebeck coefficient measurement is reported, which makes high-quality Seebeck voltage measurements on samples with resistances up to the 100 GΩ level. This is achieved through a specifically designed setup to enhance sample isolation and increase capacitive impedance. As a demonstration, Seebeck coefficient measurement of a CH3NH3PbI3 thin film is performed at dark, with sample resistance 150 GΩ, and found S = +550 µV K−1. The strategy reported could be applied to the studies of fundamental transport parameters of all intrinsic semiconductors that have not been feasible

    Line-of-sight tropospheric calibration from measurements in arbitrary directions

    Get PDF
    Tropospheric inhomogeneities limit the accuracy with which a path delay in an arbitrary direction can be estimated from calibration measurements in different directions. This article demonstrates a mathematical procedure that has the potential for minimizing errors in the estimated geometrical and tropospheric path delays. The error is minimized by applying least-squares estimation to a combined set of observables in the calibration directions and the direction to be calibrated. A simulated test of this procedure was conducted using a model set of error-free calibration measurements. In the absence of geometrical delay mismodeling, the simulation yielded delay errors which vary from about 1 mm at zenith to about 1 cm at 10 degrees. The main principles of how this procedure could be applied to improve accuracy of deep space tracking using global positioning system (GPS) data are also discussed

    An algorithm for extraction of periodic signals from sparse, irregularly sampled data

    Get PDF
    Temporal gaps in discrete sampling sequences produce spurious Fourier components at the intermodulation frequencies of an oscillatory signal and the temporal gaps, thus significantly complicating spectral analysis of such sparsely sampled data. A new fast Fourier transform (FFT)-based algorithm has been developed, suitable for spectral analysis of sparsely sampled data with a relatively small number of oscillatory components buried in background noise. The algorithm's principal idea has its origin in the so-called 'clean' algorithm used to sharpen images of scenes corrupted by atmospheric and sensor aperture effects. It identifies as the signal's 'true' frequency that oscillatory component which, when passed through the same sampling sequence as the original data, produces a Fourier image that is the best match to the original Fourier space. The algorithm has generally met with succession trials with simulated data with a low signal-to-noise ratio, including those of a type similar to hourly residuals for Earth orientation parameters extracted from VLBI data. For eight oscillatory components in the diurnal and semidiurnal bands, all components with an amplitude-noise ratio greater than 0.2 were successfully extracted for all sequences and duty cycles (greater than 0.1) tested; the amplitude-noise ratios of the extracted signals were as low as 0.05 for high duty cycles and long sampling sequences. When, in addition to these high frequencies, strong low-frequency components are present in the data, the low-frequency components are generally eliminated first, by employing a version of the algorithm that searches for non-integer multiples of the discrete FET minimum frequency

    Elemental surface analysis at ambient pressure by electron-induced x-ray fluorescence

    Get PDF
    The development of a portable surface elemental analysis tool, based on the excitation of characteristic x rays from samples at ambient pressure with a focused electron beam is described. This instrument relies on the use of a thin electron transmissive membrane to isolate the vacuum of the electron source from the ambient atmosphere. The major attributes of this instrument include rapid (several minutes) spectrum acquisition, nondestructive evaluation of elemental composition, no sample preparation, and high-to-medium (several hundreds µm) spatial resolution. The instrument proof-of-principle has been demonstrated in a laboratory setup by obtaining energy dispersive x-ray spectra from metal and mineral samples

    Programming and Proving with Distributed Protocols

    Get PDF
    Distributed systems play a crucial role in modern infrastructure, but are notoriously difficult to implement correctly. This difficulty arises from two main challenges: (a) correctly implementing core system components (e.g., two-phase commit), so all their internal invariants hold, and (b) correctly composing standalone system components into functioning trustworthy applications (e.g., persistent storage built on top of a two-phase commit instance). Recent work has developed several approaches for addressing (a) by means of mechanically verifying implementations of core distributed components, but no methodology exists to address (b) by composing such verified components into larger verified applications. As a result, expensive verification efforts for key system components are not easily reusable, which hinders further verification efforts. In this paper, we present Disel, the first framework for implementation and compositional verification of distributed systems and their clients, all within the mechanized, foundational context of the Coq proof assistant. In Disel, users implement distributed systems using a domain specific language shallowly embedded in Coq and providing both high-level programming constructs as well as low-level communication primitives. Components of composite systems are specified in Disel as protocols, which capture system-specific logic and disentangle system definitions from implementation details. By virtue of Disel’s dependent type system, well-typed implementations always satisfy their protocols’ invariants and never go wrong, allowing users to verify system implementations interactively using Disel’s Hoare-style program logic, which extends state-of-the-art techniques for concurrency verification to the distributed setting. By virtue of the substitution principle and frame rule provided by Disel’s logic, system components can be composed leading to modular, reusable verified distributed systems. We describe Disel, illustrate its use with a series of examples, outline its logic and metatheory, and report on our experience using it as a framework for implementing, specifying, and verifying distributed systems

    Atmospheric electron x-ray spectrometer

    Get PDF
    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined

    The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers

    Get PDF
    Computational models of the natural hip joint are needed to examine and optimise tissue sparing interventions where the natural cartilage remains part of the bearing surfaces. Although the importance of interstitial fluid pressurisation in the performance of cartilage has long been recognized, few studies have investigated the time dependent interstitial fluid pressurisation in a three dimensional natural hip joint model. The primary aim of this study was to develop a finite element model of the natural hip incorporating the biphasic cartilage layers that was capable of simulating the joint response over a prolonged physiological loading period. An initial set of sensitivity studies were also undertaken to investigate the influence of hip size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the joint. The contact stress, contact area, fluid pressure and fluid support ratio were calculated and cross-compared between models with different parameters to evaluate their influence. It was found that the model predictions for the period soon after loading were sensitive to the hip size, clearance, cartilage aggregate modulus, thickness and hemiarthroplasty, while the time dependent behaviour over 3000s was influenced by the hip clearance and cartilage aggregate modulus, permeability, thickness and hemiarthroplasty. The modelling methods developed in this study provide a basic platform for biphasic simulation of the whole hip joint onto which more sophisticated material models or other input parameters could be added in the future

    Biphasic investigation of contact mechanics in natural human hips during activities

    Get PDF
    The aim of this study was to determine the cartilage contact mechanics and the associated fluid pressurisation of the hip joint under eight daily activities, using a three-dimensional finite element hip model with biphasic cartilage layers and generic geometries. Loads with spatial and temporal variations were applied over time and the time-dependent performance of the hip cartilage during walking was also evaluated. It was found that the fluid support ratio was over 90% during the majority of the cycles for all the eight activities. A reduced fluid support ratio was observed for the time at which the contact region slid towards the interior edge of the acetabular cartilage, but these occurred when the absolute level of the peak contact stress was minimal. Over 10 cycles of gait, the peak contact stress and peak fluid pressure remained constant, but a faster process of fluid exudation was observed for the interior edge region of the acetabular cartilage. The results demonstrate the excellent function of the hip cartilage within which the solid matrix is prevented from high levels of stress during activities owing to the load shared by fluid pressurisation. The findings are important in gaining a better understanding of the hip function during daily activities, as well as the pathology of hip degeneration and potential for future interventions. They provide a basis for future subject-specific biphasic investigations of hip performance during activities

    Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties

    Get PDF
    Hip hemiarthroplasty is a common treatment for femoral neck fracture. However, the acetabular cartilage may degenerate after hemiarthroplasty leading to postoperative failure and the need for revision surgery. The clearance between the acetabular cartilage and head of the prosthesis is one of the potential reasons for this failure. In this study, the influence of joint clearance on the biomechanical function of a generic hip model in hemiarthroplasty was investigated using biphasic numerical simulation. Both a prolonged loading period of 4000 s and dynamic gait load of 10 cycles were considered. It was found that a larger clearance led to a higher stress level, a faster reduction in load supported by the fluid and a faster cartilage consolidation process. Additionally, the mechanical performance of the acetabular cartilage in the natural model was similar to that in the hemiarthroplasty model with no clearance but different from the hemiarthroplasty models with clearances of 0.5mm and larger. The results demonstrated that a larger clearance in hip hemiarthroplasty is more harmful to the acetabular cartilage and prosthesis heads with more available dimensions (i.e. smaller increments in diameter) could be manufactured for surgeons to achieve a lower clearance, and reduced contact stress in hemiarthroplasty surgeries

    Experimental validation of a new biphasic model of the contact mechanics of the porcine hip

    Get PDF
    Hip models that incorporate the biphasic behaviour of articular cartilage can improve understanding of the joint function, pathology of joint degeneration and effect of potential interventions. The aim of this study was to develop a specimen-specific biphasic finite element model of a porcine acetabulum incorporating a biphasic representation of the articular cartilage and to validate the model predictions against direct experimental measurements of the contact area in the same specimen. Additionally, the effect of using a different tension-compression behaviour for the solid phase of the articular cartilage was investigated. The model represented different radial clearances and load magnitudes. The comparison of the finite element predictions and the experimental measurement showed good agreement in the location, size and shape of the contact area, and a similar trend in the relationship between contact area and load was observed. There was, however, a deviation of over 30% in the magnitude of the contact area, which might be due to experimental limitations or to simplifications in the material constitutive relationships used. In comparison with the isotropic solid phase model, the tension-compression solid phase model had better agreement with the experimental observations. The findings provide some confidence that the new biphasic methodology for modelling the cartilage is able to predict the contact mechanics of the hip joint. The validation provides a foundation for future subject-specific studies of the human hip using a biphasic cartilage model
    • …
    corecore