
I
f
a

J
a

b

a

A
R
R
A

K
H
H
C
A
B
F

1

h
o
f
a
p
l
a
w
i

a
d
p

i
T

h
1
l

Medical Engineering & Physics 36 (2014) 1449–1454

Contents lists available at ScienceDirect

Medical Engineering & Physics

journa l homepage: www.e lsev ier .com/ locate /medengphy

nfluence of clearance on the time-dependent performance of the hip
ollowing hemiarthroplasty: A finite element study with biphasic
cetabular cartilage properties

unyan Lia,∗, Xijin Huaa, Zhongmin Jina,b, John Fishera, Ruth K. Wilcoxa

Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK
School of Mechanical Engineering, Xi’an Jiaotong University, China

r t i c l e i n f o

rticle history:
eceived 8 March 2014
eceived in revised form 13 May 2014
ccepted 31 May 2014

eywords:
ip
emiarthroplasty
ontact mechanics

a b s t r a c t

Hip hemiarthroplasty is a common treatment for femoral neck fracture. However, the acetabular carti-
lage may degenerate after hemiarthroplasty leading to postoperative failure and the need for revision
surgery. The clearance between the acetabular cartilage and head of the prosthesis is one of the potential
reasons for this failure. In this study, the influence of joint clearance on the biomechanical function of
a generic hip model in hemiarthroplasty was investigated using biphasic numerical simulation. Both a
prolonged loading period of 4000 s and dynamic gait load of 10 cycles were considered. It was found that
a larger clearance led to a higher stress level, a faster reduction in load supported by the fluid and a faster
cartilage consolidation process. Additionally, the mechanical performance of the acetabular cartilage in
rticular cartilage
iphasic
inite element

the natural model was similar to that in the hemiarthroplasty model with no clearance but different
from the hemiarthroplasty models with clearances of 0.5 mm and larger. The results demonstrated that
a larger clearance in hip hemiarthroplasty is more harmful to the acetabular cartilage and prosthesis
heads with more available dimensions (i.e. smaller increments in diameter) could be manufactured for
surgeons to achieve a lower clearance, and reduced contact stress in hemiarthroplasty surgeries.

© 2014 The Authors. Published by Elsevier Ltd on behalf of IPEM. This is an open access article under
. Introduction

Hip hemiarthroplasty, a surgical procedure in which the femoral
ead is replaced by a metallic prosthesis, is a common treatment
ption for joint degradation that only affects the femoral head (e.g.
emoral neck fracture). Although it is less destructive, less costly
nd requires shorter surgical time than a total hip replacement
rocedure, the acetabular cartilage, when articulating with a metal-

ic head component, may degenerate, resulting in pain, immobility
nd the need of a revision surgery [1–3]. Therefore maintaining the
ell-being of the acetabular cartilage in hip hemiarthroplasty is

mportant for the long-term performance of the joint.
Selection of the femoral component size is crucial for hip hemi-
rthroplasty, as it is directly linked with acetabular function and
egeneration [3,4]. Empirically, surgeons initially use a head tem-
late of various dimensions to determine the size of the acetabulum
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and then adopt the largest prosthesis that is smaller than the tem-
plate to achieve the smallest clearance between the prosthesis and
acetabulum. However, artificial heads are most frequently avail-
able with 2 mm increments in diameter, which still leads to a
mismatch in curvatures. A small head with larger clearance can
lead to reduced joint conformity, lower stability, increased stresses
and a faster cartilage consolidation process, while a large head
may increase the periacetabular stresses and the coefficient of fric-
tion [4–6]. The interaction between the femoral component size
and joint performance is, as yet, poorly defined. A greater under-
standing of this relationship could provide insight into whether
the current surgical options are adequate and provide guidelines
on what dimension of the prosthesis to adopt in order to improve
the outcome of hip hemiarthroplasty surgery.

Mechanical factors have long been recognised as the primary
contributor to cartilage damage. The function and degeneration of
cartilage is closely linked with its biphasic (i.e. fluid–solid) nature,
because the fluid phase is able to support most of the compressive

load applied to the tissue and it also provides an excellent lubrica-
tion environment [7–9]. Particularly for the natural hip joint which
is highly conforming, the fluid can provide over 90% load support for
a prolonged period, as found recently by the authors using a novel
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ig. 1. The three dimensional hip model in hemiarthroplasty (a) and the metal hea
C: clearance).

iphasic computational model [10,34]. It is therefore necessary to
onsider the cartilage as a biphasic structure to obtain a greater
nderstanding of the function and degeneration mechanisms of the
ip joint following hemiarthroplasty.

The time-dependent tribological performance of the hip fol-
owing hemiarthroplasty has been measured experimentally by
izhang et al. [4], which is most likely associated with the fluid
n the cartilage, supporting the importance of a biphasic inves-
igation. However, the fluid pressure distribution within the hip
annot be determined through current experimental techniques,
nd a computational approach serves as the only method by which
he biphasic behaviour of the joint can be fully investigated. Using
biphasic finite element (FE) simulation, Pawaskar et al. [11] eval-
ated the mechanical response of a hemiarthroplasty hip model for
variety of activities over short periods. However, the effect of dif-

erent head sizes (joint clearances) and a prolonged loading period
n the biphasic behaviour of hip in hemiarthroplasty has not been
nvestigated, due to the limitations of that biphasic model. The aim
f this study was therefore to use a biphasic FE model to evaluate
he influence of joint clearance on the biphasic performance of the
ip joint following hemiarthroplasty during a prolonged physio-

ogical loading period and under a dynamic load representing the
ait cycle.

. Methods

The hip hemiarthroplasty FE model used in this study was com-
osed of a pelvis with the acetabular cartilage in articulation with
metallic prosthetic head component (Fig. 1). The labrum was not

onsidered in this study, since it is commonly incomplete after
ip hemiarthroplasty surgery. Details of model construction for
he pelvis and acetabular cartilage were described in a previous
tudy [10]. Briefly, the acetabular cartilage was assumed to be
pherical (radius = 28 mm) with a uniform thickness of 2 mm to
reate a generic geometry for the acetabulum. The bone was rep-
esented by around 91,600 tetrahedral elements and the cartilage
as meshed with 8400 hexahedral elements. A sensitivity study on
he number of elements was conducted to ensure the model was
nsensitive to a denser mesh. The cartilage and bone were bound
ogether through sharing the same nodes on their interface. The
artilage was assumed to be biphasic, whereby the solid phase was
h four different dimensions articulating against with the acetabular cartilage (b–e)

represented as neo-Hookean material (aggregate Young’s modulus
E = 1.2 MPa, Poisson’s ratio � = 0.045) with a constant permeability
(K = 0.0009 mm4/N s) [12]. The bone was modelled as imperme-
able and linearly elastic with Young’s modulus of 17,000 MPa
and Poisson’s ratio of 0.3 [13]. The cortical bone and trabecular
bone were not modelled separately because they were found to
have little influence on the model predictions of interest for this
study [10].

The metallic head component was represented by a rigid and
impermeable sphere. To evaluate the influence of head size on the
model predictions, four different radial clearances (0 mm, 0.5 mm,
1 mm and 2 mm) were evaluated by varying the size of the head
(Fig. 1). The contact between articulating surfaces was assumed to
be frictionless due to the low friction coefficient [14,15]. The fluid
flow on the articulating surfaces was defined as contact-dependent
so that fluid exudation was prevented on the cartilage surface that
was in contact with the impermeable head but allowed for open
surfaces. The pelvis was fixed at the sacroiliac and pubis symphy-
sis joints. Loads were applied to the centre of the metallic head
which was fixed in rotational degrees of freedom but allowed to
move translationally for self-alignment. Rotation of the head was
not considered because of its spherical geometry and the friction-
less assumption of the articulating surfaces. Two common kinds of
loads were considered: (1) a static load of approximately 2130 N
based on the average data for one leg stance, ramped over 0.6 s
and then held constant for 4000 s; (2) a time-dependent dynamic
load during 10 cycles of gait – this load varied in magnitude and
direction through each cycle to represent walking at normal speed
(1.1 m/s) [16]. Additionally, the natural whole joint model with a
radial clearance of 0.5 mm as described in a previous study [10] was
considered for comparison.

The modelling procedure has been previously validated by com-
paring the model predictions to experimental tests, and good
agreement in contact mechanics was achieved [17,35]. FE analy-
ses were conducted using the open-source solver FEBio (version
1.5.0; Musculoskeletal Research Laboratories, Salt Lake City, UT,
USA; URL: mrl.sci.utah.edu/software/febio) [18] owing to its good

convergence capability in the simulation of biphasic materials in
contact [10]. Contact stress, contact area, fluid pressure and fluid
support ratio (the load supported by the fluid pressure over the
total load) were recorded.

http://www.mrl.sci.utah.edu/software/febio
http://www.mrl.sci.utah.edu/software/febio
http://www.mrl.sci.utah.edu/software/febio
http://www.mrl.sci.utah.edu/software/febio
http://www.mrl.sci.utah.edu/software/febio
http://www.mrl.sci.utah.edu/software/febio
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ig. 2. Contour of the contact stress (MPa) of the acetabular cartilage of the natura
.6 s and 4000 s in the static loading case (lateral and posterior refer to the orientat

. Results

Contours of contact stress for all the models under the static load
t 0.6 s and 4000 s are presented in Fig. 2. The hemiarthroplasty
odel with larger clearance had a higher peak contact stress, a

aster cartilage consolidation process as evidenced by the greater
hanges in the stress distribution, and a smaller contact area that
as concentrated within the central region of the cartilage surface.
dditionally, the contour of contact stress for the natural hip model
as similar to the hemiarthroplasty model with no clearance both
t 0.6 s and 4000 s.
Results of the models under the static load over 4000 s period

re summarised in Fig. 3. The hemiarthroplasty model with
arger clearance had higher peak contact stress, higher peak fluid

Fig. 3. Results over 4000 s period for the natural hip model and the hip models in
model and the hip models in hemiarthroplasty with different head dimensions at
the pelvis during standing).

pressure, smaller contact area and greater changes in these results
over the 4000 s. The peak contact stress decreased by 20.5% for
the hemiarthroplasty model with 2 mm clearance, while there was
almost no change (<1%) in the peak contact stress for the model
with no clearance over the 4000 s period. The fluid support ratio
was above 90% over the 4000 s period for all the models, and was
slightly higher but decreased faster for models with larger clear-
ances. The decrease in fluid support ratio was 6.9% and 4.5% for the
model with a clearance of 2 mm and 0 mm, respectively. Compa-
rable results were found between the natural hip model and the

hemiarthroplasty model with no clearance.

The fluid flux for the hemiarthroplasty models with 0 mm and
2 mm clearances is illustrated in Fig. 4. For the model with no clear-
ance, fluid flux mainly occurred around the edge region of the

hemiarthroplasty with different head dimensions in the static loading case.
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Fig. 4. Contour of fluid flux on the acetabular cartilage for the hemiarthroplasty
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odel with 0 and 2 mm radial clearances respectively at the instantaneous period
n the static loading case. The directions of fluid flux were exhibited by grey vectors.

artilage. For the model with 2 mm clearance, however, the fluid
ux was higher in magnitude and scattered across a larger area
round the central region of the acetabular cartilage, suggesting a
aster consolidation process.

A summary of results for the gait loading case is presented in
ig. 5. Again, similar results were found between the natural hip
odel and the hemiarthroplasty model with no clearance. Higher

eak contact stress and peak fluid pressure were observed for the
emiarthroplasty model with larger radial clearance. Very little
hange in the peak contact stress and peak fluid pressure was
etected over 10 cycles. However, an obvious drop in fluid support
atio over the cycles was found for the model with larger clearance,
articularly during the mid-swing phase when contact occurred
t the interior region of the acetabular cartilage. For the model
ith a clearance of 2 mm at the mid-swing phase, the fluid sup-
ort ratio was 78% at 0.6 s and decreased to 53% after 10 cycles of
ait. Greater contact concentration around the interior edge of the
cetabular cartilage was found in the model with larger clearance
uring mid-swing.

. Discussion

In this study, the influence of joint clearance on the biphasic per-
ormance of the hip following hemiarthroplasty was investigated
sing a FE model. Both a static load during a prolonged loading
eriod and a dynamic gait load over several cycles were considered

n order to simulate the circumstances commonly experienced by
he hip. A similar investigation was conducted by Pawaskar [19]
n which a biphasic model of the hip following hemiarthroplasty

as used to examine the performance of the treatment with vary-
ng clearances under a static load for 600 s. The major limitation of
hat study was that the time-dependent joint response was not
vident over the loading period of 600 s, thus limited informa-
ion on joint performance or likelihood of degeneration could be
erived. A longer loading period was not achieved due to conver-
ence difficulties with the model. By adopting a newly developed
odelling technique [10], in the current study, the loading period
as extended to an extreme period of 4000 s for loads of physiolog-

cal magnitude, whereby an obvious cartilage consolidation process
as detected. Only 10 cycles of gait were evaluated here because

he small time step that is necessary to represent variation in load
ver the cycle required a lengthy simulation period. Yet, the con-
olidation process of the joint over 10 cycles of gait was detected,
roviding a pattern that can be used to predict the trend for more
ycles.

During the early loading period, a larger clearance leads to a
maller contact area, substantially increased peak contact stress,

ut a slightly lower fluid support ratio, which would contribute
o a higher stress level in the solid matrix of the acetabular carti-
age, a greater level of friction and a greater potential to degenerate.
ver a prolonged loading period, the cartilage consolidated faster
hysics 36 (2014) 1449–1454

in the model with larger clearance, because of the faster fluid exu-
dation, also suggesting a more harmful mechanism with a large
clearance.

Over 10 cycles of gait, an increased peak contact stress and faster
cartilage consolidation process were also observed for the model
with larger clearance. In particular at mid-swing, the fluid support
ratio was lower and decreased substantially faster in the model
with larger clearance when contact occurred near the interior edge
of the acetabular cartilage. This is because the tissue around the
interior region of the acetabular cartilage was less confined and
thus had a lower capability to support fluid than the tissue in the
central acetabular cartilage [10,20,21], and at the same time, the
interstitial fluid can easily exudate from the interior edge. The
greater contact concentration associated with the model with a
larger clearance, as evidenced by a smaller contact area and higher
peak stress, may lead to a greater proportion of load being trans-
ferred to the solid matrix and a faster consolidation process for
the tissue around the edge region. Besides, a lower fluid support
ratio means a higher portion of load shared by the solid matrix,
suggestive of an increased friction coefficient [22,23]. Therefore,
a larger clearance in hip hemiarthroplasty may also have a worse
effect on the acetabular cartilage, particularly for the tissue around
the interior region during dynamic loads.

In most of the previous numerical studies on the hip, the car-
tilage was assumed to be incompressible and monophasic (e.g.
hyperelastic) to simulate the biphasic response of the joint dur-
ing the early period of loading. As shown in the static loading case,
it takes more than 1000 s to observe an obvious cartilage consol-
idation when the contact occurs around the central acetabulum
region. However, for the time at which the contact slides toward
the edge region, cartilage consolidation becomes obvious only over
10 cycles of gait (∼10 s). This suggests that monophasic joint simu-
lations are appropriate for very specific circumstances. On the other
hand, in the dynamic loading case, the pattern of fluid exudation is
subject to the variation in the loading magnitude and loading direc-
tion over time, suggesting that dynamic loads should be applied in
a time-dependent way for biphasic simulations.

The main limitations of this study are the adoption of a generic
joint geometry and the assumption of a linear elastic solid phase
for the cartilage. The linear elastic solid phase assumed in this
study is not able to represent the inhomogeneous fibre-reinforced
structure where the tensile stiffness is higher than the aggregate
stiffness [24–26]. This assumption potentially results in underes-
timated peak contact stress, fluid support ratio and confinement
effect of the tissue, particularly for the acetabulum edge region
around which the contact occurred during mid-swing [10]. The
generic joint geometry, as represented by the spherical acetabulum
with uniform cartilage thickness, potentially leads to an underes-
timated peak contact stress and an altered shape in contact area
[27]. The peak contact stress of the models in this study ranged
from 3 MPa to 5 MPa, which is lower than previous experimen-
tally measured results (i.e. 4–10 MPa) [28–31], but consistent with
previous numerical models with similar geometrical assumptions
(i.e. 3–4 MPa) [11,32,33]. However, these assumptions are appro-
priate for the purpose of this parametric study on a generic hip, and
necessary to offset the potential influences caused by individual
variations. Additionally, the higher peak contact stress and faster
cartilage consolidation process associated with a larger clearance,
as observed in this study, are well supported by a recent in vitro
experimental study [4] using porcine hips following hemiarthro-
plasty. This also suggests that the models used here, although with
several simplifications, are able to accurately capture the cause-

and-effect relationship for parametric analysis purposes.

In both the dynamic loading and prolonged static loading cases,
a larger clearance of the hip in hemiarthroplasty was found to be
more harmful to the acetabular cartilage, as evidenced by a higher
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ig. 5. Results of the natural hip model and the hip model in hemiarthroplasty with
t mid-swing during the 1st cycle.

tress level and faster cartilage consolidation process. The biome-
hanical function of the acetabular cartilage in the natural model
as similar to that in the hemiarthroplasty model with no clearance

ut different from the hemiarthroplasty models with clearances of
.5 mm and larger, suggesting that clearance needs to be avoided
r minimised to ensure the joint following hemiarthroplasty is as
lose to the normal healthy mechanical environment. It is also rec-
mmended that prosthesis heads with more available dimensions
i.e. smaller increments in diameter) should be manufactured for

urgeons to achieve a minimal clearance during hemiarthroplasty
urgery. Further studies will focus on subject-specific evaluations
o provide more stratified intervention guidelines.
nt head dimensions over 10 cycles of gait, along with the contours of contact stress
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