54 research outputs found

    Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay

    Get PDF
    Background: Hydrogen peroxide is a common reactive oxygen intermediate generated by variousforms of oxidative stress. Aims: The aim of this study was to investigate the DNA damage capacity ofH2O2 in HepG2 cells. Methods: Cells were treated with H2O2 at concentrations of 25 μM or 50 μM for5 min, 30 min, 40 min, 1 h or 24 h in parallel. The extent of DNA damage was assessed by the cometassay. Results: Compared to the control, DNA damage by 25 μM and 50 μM H2O2 increasedsignificantly with increasing incubation time up to 1 h, but it was not increased at 24 h. Conclusions:Our Findings confirm that H2O2 is a typical DNA damage inducing agent and thus is a good modelsystem to study the effects of oxidative stress. DNA damage in HepG2 cells increased significantlywith H2O2 concentration and time of incubation but later decreased likely due to DNA repairmechanisms and antioxidant enzyme

    Large-scale discovery of novel genetic causes of developmental disorders

    Get PDF
    Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders1, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach2 to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing3,4,5,6,7,8,9,10,11 and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders

    Polygraph testing internet offenders

    No full text

    Prenatal diagnosis of cloacal anomalies

    Full text link

    Two simple measures of variability for categorical data

    No full text
    This paper proposes two new variability measures for categorical data. The first variability measure is obtained as one minus the square root of the sum of the squares of the relative frequencies of the different categories. The second measure is obtained by standardizing the first measure. The measures proposed are functions of the variability measure proposed by Gini [Variabilitá e Mutuabilitá Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche, C. Cuppini, Bologna, 1912] and approximate the coefficient of nominal variation introduced by Kvålseth [Coefficients of variation for nominal and ordinal categorical data, Percept. Motor Skills 80 (1995), pp. 843–847] when the number of categories increases. Different mathematical properties of the proposed variability measures are studied and analyzed. Several examples illustrate how the variability measures can be interpreted and used in practice
    corecore