688 research outputs found

    Propeller aircraft interior noise model

    Get PDF
    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller

    Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    Get PDF
    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions

    Seeing the landscape for the trees: metrics to guide riparian shade management in river catchments

    Get PDF
    Rising water temperature (Tw) due to anthropogenic climate change may have serious consequences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly heterogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topographic shade modelling, to assess the relative significance of landscape and riparian shade to the thermal behaviour of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national average) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most beneficial for managing Tw at distances 5 to 20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little landscape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 1°C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation and downward diffuse radiation on Tw to help tree planting schemes achieve intended outcomes

    Wettest December in the Lake District for over 200 years

    Get PDF
    Wettest December in the Lake District for over 200 year

    Propeller aircraft interior noise model: User's manual for computer program

    Get PDF
    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813

    HydroDetect: The Identification and Assessment of Climate Change Indicators for an Irish Reference Network of River Flow Stations - an Overview

    Get PDF
    This paper provides an overview of key findings from the EPA funded HydroDetect project which establishes an Irish Reference Network (IRN) of river flow gauges for monitoring and detecting climate driven trends. The flow archive from 35 hydrometric stations has an average record length of 40 years and draws from the strengths of the existing national hydrometric network. Using criteria based on the quality of flow records and minimisation of artificial influences and land-use change, complimented by expert judgement, the IRN is a valuable resource facilitating more strategic monitoring of climate driven variability and change in hydrological indicators and enabling more confident attribution of detected trends. Here an analysis of trends in mean and high flows for stations in the IRN is presented, with the spatial distribution of trends across the network examined for the period 1976-2009. The following key findings emerge. While there is considerable evidence of change in the IRN, it is difficult at this point in time to attribute these to anthropogenic greenhouse gas induced climate change. Indeed some of the trends identified – decreases in shorter records in winter mean flows and increases in summer flows – are not consistent with expected changes as simulated by Global Climate Models. This should not be surprising given the large variability of river flows relative to climate change signals at this point. Trends in Irish river flows are strongly correlated with the winter North Atlantic Oscillation Index (NAOI). The sensitivity and response of the NAO to greenhouse gas forcing will have obvious implications for Irish hydrology; however the question remains open as to the impact that greenhouse gas forcing has had on recent behaviour of the NAO and how it is likely to respond to future forcing. While it remains challenging to identify anthropogenic climate change signals at the catchment scale due to large natural variability and therefore a low signal to noise ratio, there is high potential for identifying sentinel stations and indicators within the IRN for early detection of climate change signals. These findings heighten the importance of the IRN for monitoring and detecting climate change signals at the catchment scale, for tracking the emergence of signals relative to natural variability and for providing information, free from confounding factors, for validating output from climate change impact assessments and developing adaptation policies

    A systematic assessment of drought termination in the United Kingdom

    Get PDF
    Drought termination can be associated with dramatic transitions from drought to flooding. Greater attention may be given to these newsworthy and memorable events, but drought terminations that proceed gradually also pose challenges for water resource managers. This paper defines drought termination as a distinctive phase of the event. Using observed river flow records for 52 UK catchments, a more systematic and objective approach for detecting drought terminations is demonstrated. The parameters of the approach are informed by a sensitivity analysis that ensures a focus on terminations of multi-season to multi-year droughts. The resulting inventory of 467 drought terminations provides an unprecedented historical perspective on this phenomenon in the UK. Nationally and regionally coherent drought termination events are identifiable, although their characteristics vary both between and within major episodes. Contrasting drought termination events in 1995–1998 and 2009–2012 are examined in greater depth. The data are also used to assess potential linkages between metrics of drought termination and catchment properties. The duration of drought termination is moderately negatively correlated with elevation (rs =  −0.47) and catchment average rainfall (rs =  −0.42), suggesting that wetter catchments in upland areas of the UK tend to experience shorter drought terminations. More urbanized catchments tend to have gradual drought terminations (contrary to expectations of flashy hydrological response in such areas), although this may also reflect the type of catchments typical of lowland England. Significant correlations are found between the duration of the drought development phase and both the duration (rs =  −0.29) and rate (rs =  0.28) of drought termination. This suggests that prolonged drought development phases tend to be followed by shorter and more abrupt drought terminations. The inventory helps to place individual events within a long-term context. The drought termination phase in 2009–2012 was, at the time, regarded as exceptional in terms of magnitude and spatial footprint, but the Thames river flow record identifies several comparable events before 1930. The chronology could, in due course, provide a basis for exploring the complex drivers, long-term variability, and impacts of drought termination events

    Drought termination: concept and characterisation

    Get PDF
    There are numerous anecdotal examples of drought terminations documented throughout the historical record on most continents. The end of a drought is the critical time during which water resource managers urgently require information on the replenishment of supplies. Yet this phase has been relatively neglected by the academic community, with much of the existing body of research on drought termination assessing the likelihood of droughts ending rather than its temporal profile. In particular, there has been little effort to characterise drought termination events themselves. This is partly explained by existing definitions of drought termination as a specific point in time when drought is considered to have finished, rather than a more holistic consideration based on approaches developed within biological sciences. There is also a lack of understanding about how drought termination propagates through the hydrological cycle. This paper specifically examines and reviews available research on drought termination, highlighting limitations associated with current definitions and offering suggestions for characterising the temporal stages of drought. An alternative definition of drought termination is proposed: a period between the maximum negative anomaly and a return to above-average conditions. Once this phase has been delineated, the duration, rate and seasonality of drought termination can be derived. The utility of these metrics is illustrated through a case study of the 2010–2012 drought in the UK, and the propagation of drought termination between river flows and groundwater levels
    • …
    corecore