-

View metadata, citation and similar papers at core.ac.uk brought to you bylt CORE

provided by NERC Open Research Archive

Article
Progress in Physical Geography
1-25
Drought termination: © The Authorts) 2016

Concept and characterisation

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0309133316652801
ppg.sagepub.com

Simon Parry SSAGE

Centre for Ecology & Hydrology, UK; Loughborough University, UK

Christel Prudhomme
Centre for Ecology & Hydrology, UK; Loughborough University, UK

Robert L. Wilby
Loughborough University, UK

Paul ). Wood
Loughborough University, UK

Abstract

There are numerous anecdotal examples of drought terminations documented throughout the historical
record on most continents. The end of a drought is the critical time during which water resource managers
urgently require information on the replenishment of supplies. Yet this phase has been relatively neglected by
the academic community, with much of the existing body of research on drought termination assessing the
likelihood of droughts ending rather than its temporal profile. In particular, there has been little effort to
characterise drought termination events themselves. This is partly explained by existing definitions of
drought termination as a specific point in time when drought is considered to have finished, rather than a
more holistic consideration based on approaches developed within biological sciences. There is also a lack of
understanding about how drought termination propagates through the hydrological cycle. This paper spe-
cifically examines and reviews available research on drought termination, highlighting limitations associated
with current definitions and offering suggestions for characterising the temporal stages of drought. An
alternative definition of drought termination is proposed: a period between the maximum negative anomaly
and a return to above-average conditions. Once this phase has been delineated, the duration, rate and
seasonality of drought termination can be derived. The utility of these metrics is illustrated through a case
study of the 2010-2012 drought in the UK, and the propagation of drought termination between river flows
and groundwater levels.

Keywords
Drought, drought termination, end of drought, hydrological cycle, low flow, meteorological drought, agri-
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been developed to characterise drought with a
wide range of applications in mind (Lloyd-
Hughes, 2014). The multiple factors that should
be considered when defining drought (e.g. the
type of data, and the spatial and temporal scales)
have been discussed extensively (e.g. Dracup
et al., 1980; Tallaksen and Van Lanen, 2004).

Drought termination is a characteristic of a
drought event that describes its end. Drought
terminations are often abrupt and disruptive
(Dettinger, 2013; Rulinda et al., 2012), and their
association with high-flow events can have sub-
stantial impacts on the water quality of rivers
(Whitehead et al., 2009). Just as droughts are an
international phenomenon, so too are drought
terminations. Examples in the literature of nota-
ble drought terminations and their impacts,
reported from every continent except Antarc-
tica, are outlined in Table 1.

In addition to being associated with notable
hydrometeorological events, it could also be
argued that the end of a drought is its most crit-
ical phase. The consequences of continued
drought can be far reaching, such as impacting
food security and even the global economy
(McNutt, 2014). Improved knowledge of the
likelihood of when, why and how a drought
might terminate would be useful for decision-
makers in managing the transition from
drought to replenished water supplies (Hanna-
ford et al., 2011; Patterson et al., 2013). To
date, this phase has been neglected in the liter-
ature relative to other facets, such as drought
severity (e.g. Sharma, 1997) or onset (e.g.
Yuan and Wood, 2013).

Propagation of drought termination through
the hydrological cycle and associated ecosys-
tems is currently not fully understood, but an
improved understanding of the underlying phys-
ical processes could lead to better monitoring
and forecasting capability. Drought monitoring
and early warning systems must address the
challenge of appropriately defining the end of
a drought throughout the different elements of
the hydrological cycle (rather than just

meteorological; Shukla et al., 2011). However,
at present early warning systems are hindered
by existing drought indices which do not ade-
quately characterise or identify drought termi-
nation (Heim Jr. and Brewer, 2012). The lack of
appropriate methods for forecasting drought ter-
mination has also been identified as a major
challenge (Panu and Sharma, 2002).

The drivers and physical processes of
drought termination are poorly understood for
historical and contemporary events, and it has
been suggested that drought termination of
severe droughts may be increasingly difficult
in future. Increasing temperatures and evapo-
transpiration may inhibit drought termination,
with subsequent drought events superimposed
on incomplete drought terminations (Gutzler
and Robbins, 2011). If the typical timeframe
between droughts becomes shorter than the
duration of replenishment for water resource
infrastructure, the outlook for society will be
challenging (Patterson et al., 2013), and the
superimposition of the next drought upon
below-normal water availability could have
serious implications for water resource manage-
ment (Thomas et al., 2014).

The phrase ‘drought recovery’ implies a
longer-term focus on the impacts of a drought
in terms of water quality and ecology, amongst
others. The review material and improved
approach introduced in this study discusses
‘drought termination’, which is more focused
on the return of river flows to ‘normal’ condi-
tions. Whilst it is acknowledged that cumulative
deficit approaches are relevant and important
for some studies on the recovery from drought
(such as those on the concept of resilience, for
example), the focus on river flow dynamics
herein does not require the replenishment
of an accumulated deficit volume. Such
approaches are, therefore, beyond the scope of
the review material. Drought termination will
be used throughout with the exception of the
part of the literature review which draws
insights from ecological research, in which the
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notion of longer-term recovery is well
established.

The following section examines the scientific
literature, outlining key limitations of current
approaches for defining the drought termination
and suggesting possible improvements. An
alternative definition of drought termination
and its associated metrics are then outlined. The
utility of these metrics in characterising drought
termination is demonstrated with reference to a
case study of the 2010-2012 drought in the UK.
Finally, some perspectives are presented on out-
standing knowledge gaps in the field of drought
termination research.

Il Drought termination: a review
| Quantification of drought termination

The number of indices dedicated specifically to
quantifying drought termination is relatively
limited. Indicators that have been used in anal-
yses of the end of a drought are briefly evaluated
in Table 2. Some assess the likelihood of a
return to ‘normal’ conditions according to cli-
matological probability (Byun and Wilhite,
1999), applying indices such as the Palmer
Drought Severity Index (PDSI), the Standar-
dised Precipitation Index (SPI) or rainfall dec-
iles. Using the decreasing steepness of river
flow recessions following successive rainfall
events during termination, Kienzle (2006) esti-
mated the return of the baseflow component of
the hydrograph by applying a recession index.
Composite indicators have been applied by Hao
and AghaKouchak (2013) and Naumann et al.
(2014), coupling meteorological and soil moist-
ure indices in order to provide a better represen-
tation of drought termination across a broader
range of hydrometeorological systems. The
Multivariate Standardised Drought Index
(MSDI; Hao and AghaKouchak, 2013) com-
bines a meteorological index that potentially
improves detection of onset (because a rainfall
deficit is the principle driver of drought) with a
soil moisture index that better represents

drought persistence, and, therefore, drought ter-
mination (because the replenishment of soil
moisture is a prerequisite for further propaga-
tion of drought termination into river flows or
groundwater levels). Naumann et al. (2014) also
combined meteorological and soil moisture
indicators and found evidence of spatial varia-
bility in drought termination in the historical
record for four major river basins across Africa.
There was concurrence across drought indices
in the timing of drought termination but the area
over which this occurred varied (Naumann
etal., 2014), suggesting that the area over which
drought termination occurred differed depend-
ing on the element of the hydrological cycle
under consideration (i.e. rainfall or soil moist-
ure). In the UK, ratios relating average hydro-
logical conditions during the 2010-2012
drought with those during the drought termina-
tion were calculated for river flows, soil moist-
ure and reservoir stocks by Parry et al. (2013).
However, the timeframes were arbitrarily cho-
sen and, therefore, cannot be used to place the
2012 drought termination in its full historical
context. Byun and Wilhite (1999) asserted that
existing drought indices do not adequately
address the drought termination phase, and fail
to consider propagation through surface and
subsurface elements of the hydrological cycle.

2 From catchment to synoptic scale

At the local scale, drought termination has
received some attention through catchment
water balance studies. For example, Lange and
Haensler (2012) analysed the partitioning of
runoff from nine post-drought events, and
reported that event rainfall dominated initial
peak flows but subsurface water gained impor-
tance with each subsequent rainfall event.
Re-wetting of the soil profile from lower to
upper horizons during drought termination
events (Miller et al., 1997) may account for this
delayed subsurface response, as well as poten-
tial lags between wet weather and increased
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river flows (Mitchell et al., 2012). Conversely,
the complexity of the drought termination pro-
cess within the soil column is illustrated by Srid-
har et al. (2008), who found that surface layers
re-wetted during the cropping season whilst
lower horizons continued in deficit through the
remainder of the year. The prolonged nature of
flow increases at the end of droughts relative to
recessions following floods has been estab-
lished for both soil moisture (Brubaker and
Entekhabi, 1996) and groundwater borehole
levels in aquifers (Eltahir and Yeh, 1999). Thi-
ery et al. (1993) tested the hypothesis that aver-
age rainfall over a given period of time was
sufficient to terminate groundwater drought in
an aquifer in Burkina Faso, and found that levels
could take a decade to return to normal under
such a scenario.

The aspect of drought termination that has
perhaps received greatest attention in the liter-
ature is the larger, synoptic scale factors that act
as drivers. Given that much of the existing
research has been conducted in North America,
the emphasis has been on understanding the
influence of tropical cyclones on drought termi-
nation. Kam et al. (2013) compared runs of a
land surface hydrological model driven by rain-
fall series which include and exclude the preci-
pitation delivered by tropical cyclones. These
low-pressure systems were found to trigger ear-
lier drought termination, playing a crucial role
in reducing the impact of drought in coastal
areas of the USA, a potentially undervalued
benefit of tropical storms (Lam et al., 2012).
Across the period 1895-2011, Maxwell et al.
(2013) detected an increase in the number of
hurricanes that terminate drought events in the
south-eastern USA, and an increase in the area
experiencing drought relief from these storms
along the Gulf Coast. Patterson et al. (2013)
found that short-duration hydrological droughts
tended to terminate throughout the summer
half-year, most likely during the hurricane sea-
son in Atlantic parts of the USA, while long
droughts generally terminated in the late spring

or early summer, and were least likely to end
during winter. For the west coast of the USA,
Dettinger (2013) found that atmospheric rivers
(pathways of water vapour transport in the
upper atmosphere) terminated between 33%
and 74% of all droughts over the period 1950—
2010. In addition, the importance of surface—
atmosphere interactions was underlined by
Roundy et al. (2013), who found that a change
in coupling mechanism between the wet season
and the dry season in the south-eastern USA
meant that drought termination was less likely
once the wet season had ended.

3 Monitoring and forecasting drought
termination

There have been a number of studies on the
monitoring of fluxes of terrestrial water storage
(TWS) which capitalise on the latest develop-
ments in remote sensing technology. Such
approaches provide data on and allow analysis
of drought development and drought termina-
tion (amongst other phenomena) on a spatial
scale not previously possible. The Gravity
Recovery and Climate Experiment (GRACE)
method has been particularly useful for identi-
fying changes in quantities of water over large
spatial scales. In Australia, GRACE data
demonstrated the lagged hydrological drought
termination in 2009 despite the return of rainfall
over the Murray—Darling basin in 2007
(Leblanc et al., 2009). An increase in TWS in
the Okavango and Zambezi basins was attrib-
uted to a transition to a wetter phase following
drought (Ahmed et al., 2014). In addition,
GRACE data for the Amazon basin detected a
change in TWS from a new minimum to a new
maximum value over a six-month period in
2005/2006 (Chen et al., 2009), representing the
termination of the most severe drought in more
than 100 years in this region. In contrast to the
lags detected in Australia by Leblanc et al.
(2009), the Amazon study by Chen et al.
(2009) suggested there was little lag between
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meteorological, soil moisture and hydrological
drought terminations in 2005/2006. In China,
GRACE data tracked drought termination in
2009/2010, but this was interrupted by the onset
of the next episode (Tang et al., 2014). Wang
et al. (2012) found that gains in TWS over the
first decade of the 21st century could be
explained by the drought termination in the
Canadian Prairies in 1999-2005. Houborg
et al. (2012) explored the integration of
GRACE-based drought indicators with North
American drought monitors, whilst Heim Jr.
and Brewer (2012) underlined the importance
of including drought termination within any
monitoring framework. Global Positioning Sys-
tem (GPS) vertical position anomalies (mea-
sured at stations across the High Plains region
of central USA) were used as an appropriate
substitute for absent GRACE data, and demon-
strated that soil moisture drought termination
lagged three to six months behind the meteoro-
logical drought termination in the USA in 2012/
2013 (Chew and Small, 2014). GPS vertical
position anomalies were also shown to detect
both uplift and reloading of the Earth’s crust
in the western USA in response to drought and
wet conditions, respectively (Borsa et al., 2014).
Remote sensing instruments have also been
used to assess the return to normal of vegetation,
for example during the 2003 drought in Europe
(Gobron et al., 2005).

Forecasting drought termination is regarded
as more problematic (Byun and Wilhite, 1999)
than drought onset (Mo, 2011). This is because
existing indices are not sufficiently precise to
identify the end of a drought, and no adequate
solutions have been found that solve problems
associated with the predictability of drought ter-
mination (Byun and Wilhite, 1999). Hunt
(2009) explored the potential use of the El Nifio
Southern Oscillation (ENSO) in predicting
drought characteristics, but found that proper-
ties (including drought termination) are essen-
tially random, with stochastic forcings
suggesting little predictability. Seager (2007)

reached a similar conclusion in a study of North
American drought events. In this case, an
ensemble of climate model simulations failed
to capture the delayed drought termination in
regions of the USA, leading to the conclusion
that spatial variability in drought termination
was not predictable from oceanic forcings.
However, some studies have demonstrated
more promising results: Sigaroodi et al. (2014)
forecasted rainfall events that provide drought
relief with moderate accuracy, although the
magnitude of rainfall was poorly predicted;
Hannaford et al. (2011) found that there was
some ability to forecast drought termination
using statistical relationships of the spatial
coherence of drought across European regions;
and Shukla et al. (2011) hindcasted historical
droughts in Washington State, USA, using
meteorological, hydrological and soil moisture
drought indices, and suggested that drought ter-
mination was predictable up to four months in
advance of official announcements.

The question of how much rainfall is
required to terminate a given drought is of para-
mount importance to the forecasting of drought
termination, often in response to both public
interest (Byun and Wilhite, 1999) and water
resource management. One of the earliest dedi-
cated studies used the PDSI to calculate the
amount of rainfall required for drought termi-
nation over a range of timeframes (Karl et al.,
1987). The climatological probabilities of
receiving those amounts of rainfall were quan-
tified using a gamma distribution, and results
varied spatially and temporally. Antofie et al.
(2014) applied the PDSI in a similar way to the
Carpathian region of Europe, and found that the
areas with the largest quantities of rainfall
required for drought termination had the lowest
climatological probability of receiving such
totals. The local controls on the relationship
between rainfall deficit and likelihood of
drought termination are important in determin-
ing spatial variations in the characteristics of
drought termination. More recently,
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sophisticated gridded soil moisture and hydro-
logical models were used to address the same
question (e.g. Bell et al., 2013; Pan et al.,
2013). The models were able to assess the
amount of rainfall required to replenish subsur-
face water storage at a spatial resolution of
~15 km (0.125°; Pan et al., 2013) down to 1
km (Bell et al., 2013), but these studies
departed from Karl et al. (1987) in their appli-
cation of ensembles of rainfall forecasts to indi-
cate the likelihood of drought termination.
Others have used the maximum and average
rates of change in storage applied to the deficit
at the current time step to calculate the mini-
mum and average time for drought termination
(Thomas et al., 2014). Whilst these studies
addressed important questions, they only
focused on drought termination in soil moisture
and subsurface stores. However, there is a need
to extend these analyses to hydrogeological
drought termination to inform wider water
resource management.

4 Insights on drought termination from
ecological research

Whilst drought termination has been relatively
neglected in the hydrological literature, greater
attention has been given to post-drought ‘recov-
ery’ in the field of ecology, suggestive of a more
holistic transition at the end of a drought. Ecol-
ogists are often more interested in the recovery
from drought than the impacts of the drought
itself. For example, Holmes (1999) focused pre-
dominantly on the 1993-1995 period when
studying the effects of the 1988—1992 drought
on streams draining the Chalk of southern Eng-
land. Variation in the resilience of different com-
munities was found, with some systems returning
to predicted states whilst elsewhere pre- and
post-drought conditions were notably different.
Ecosystem structure and function change as
the system becomes progressively stressed dur-
ing drought, but recovery does not necessarily
restore the system to the same state (Lake,

2011). There are an unknown number of possi-
ble recovery trajectories; determining the extent
to which recovery is ‘complete’ is difficult in
the absence of long-term datasets, particularly
when recovery proceeds towards an alternative
state. It is perhaps more appropriate to define
recovery as the ‘restored capacity to withstand
natural disturbances’ (Bond et al., 2008), allow-
ing ecosystems to reconfigure in ways that
maintain functionality (Ledger et al., 2013).
According to this definition, it is not important
what form the recovered ecosystem takes; the
most relevant aspect of the post-drought ecosys-
tem is the restoration of resilience to future
stresses (drought or otherwise).

In hydrometeorological studies of drought
development and drought termination, amounts
of water fluctuate between high and low, either
rising or falling, but always moving in one of
two directions. In ecology, the behaviour is
much more complex reflecting different life
cycle lengths and habitat preferences. The
development of ecological indices of recovery
is hindered by some of the same issues that
affect hydrological drought termination metrics.
Intermittent rainfall and pulses of high flows
may temporarily ease drought conditions, yet
are insufficient to lead to complete recovery
(‘ramp’ response of Lake, 2000).

Considerations of the different rates of recov-
ery are familiar to ecologists. Although ecolo-
gical recovery can be rapid, many species tend
to recover slowly (Cowx et al., 1984; Stubbing-
ton et al., 2009), particularly when considering
taxa with long life cycles and slow growth rates.
The duration of the recovery phase can often
exceed that of the drought itself. This creates a
potential problem when distinguishing between
drought development and drought termination
phases. Ecosystems may not fully recover from
a previous drought before becoming stressed by
a subsequent event and the interruption of a
recovery phase by a subsequent drought can
have a substantial impact on species richness
(Lake, 2011). For instance, ecological studies
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in the 1990s in the UK observed the impacts of
the 1995-1997 drought superimposed upon par-
tial recovery from the 1988—1992 drought (West-
wood et al., 2006). A systematic assessment of
hydrological drought terminations is required
before conclusions can be drawn on the preva-
lence of interrupted recovery in hydrometeorolo-
gical terms. It has also been suggested that the
completion of drought termination before the next
occurrence of drought may become less likely in
the future due to increasing temperatures and
evapotranspiration (Gutzler and Robbins, 2011).

Flora and fauna are generally slower to
respond to rainfall at the end of a drought
because an additional lag is introduced whilst
hydrological conditions recover in rivers, lakes
and groundwater. Nevertheless, there is evi-
dence to suggest that recoveries extending up
to two years represent the upper limit for most
macrophytes and invertebrates in temperate
environments, regardless of how prolonged or
severe the preceding hydrometeorological
drought (Holmes, 1999; Wood and Armitage,
2004). The recovery of fish populations may
take longer, typically up to three to five years
(Lake, 2011), and potentially even longer for
some iconic species such as sea-trout and sal-
mon (Elliott et al., 1997). The restoration of
habitats is not sufficient to trigger immediate
recovery because there may be additional lags
associated with long-term migratory factors.
Successive drought and recovery phases may
also impact the phenology and hence commu-
nity structure of aquatic species via water tem-
perature effects linked to variations in river flow
(Everall et al., 2014).

Drought recovery in temperate ecosystems is
more likely to occur during the wettest season
(Holmes, 1999; Wright et al., 2002). The
increased effectiveness of rainfall is a factor that
influences hydrogeological and ecological
drought terminations. The extent of drought ter-
mination or recovery under moderately wet con-
ditions through the summer half-year has not
been adequately addressed in either hydrology

or ecology. The rate and magnitude of ecologi-
cal recovery is partly determined by the season
in which drought termination occurs (Holmes,
1999), and this is superimposed upon annual
cycles of growth and reproduction (Wright and
Symes, 1999). The variation in seasonal
response may also exist in hydrology due to
variations in the ‘effectiveness’ of rainfall — the
extent to which the impact of rainfall on river
flows and groundwater levels is negated by the
reduction of soil moisture due to evapotran-
spiration. Similarly, drought characteristics
influence the distribution of species and refugia
(Lake, 2011), and these represent the antecedent
conditions from which recovery begins. In this
ecological sense, the characteristics of drought
have an important impact on the subsequent
recovery (Wood and Petts, 1999).

To summarise, there appears to be a greater
appreciation in ecological studies that the return
of rainfall is not necessarily sufficient for full
ecosystem recovery. Recovery can be complex
and long-lasting, often influenced by the charac-
teristics of the preceding drought, and propagates
at different rates through hydrometeorological
systems and ecosystems. The return to ‘normal’
conditions is considered by ecologists to be a
phenomenon worthy of study in its own right.

5 Toward new ways of defining drought
termination

Many of the studies outlined above draw con-
clusions about the end of droughts based on an
inadequate definition of drought termination.
This is because drought indices usually include
a termination criterion (such as a pre-
determined period of time above a given thresh-
old) to indicate cessation of drought conditions;
drought periods are, therefore, treated as occa-
sional deficits from ‘normal’ conditions
(Figure 1). However, drought termination is
often associated with wet conditions and can
result in severe flooding, diverging from the
common concept of drought as a dry period.
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Figure |. Conceptual diagram of existing definitions of drought termination. The grey line represents the
long-term average (LTA) value for each time step and the black line represents positive and negative

anomalies (%) from the LTA.

Moreover, an instantaneous transition from def-
icit to ‘normal’ conditions ignores the fact that
water will be replenished over a period of time.
Characterising the duration of drought termina-
tion would enable the differentiation of hydro-
meteorological conditions leading to drought
development (dry) or drought termination
(wet).

A small number of studies have attempted to
characterise the drought termination phase. For
example, Mo (2011) outlined a transition period
at the end of a drought which can last for one
month to one season, and underlined that the
duration was much shorter for drought termina-
tion than for drought development. Bonsal et al.
(2011) delineated six different periods within a
drought (‘Onset’, ‘Growth’, ‘Persistence’,
‘Peak’, ‘Retreat’ and ‘Termination’). The ‘Ter-
mination’ represents the end point of the
drought, whereas the ‘Retreat’ phase most
closely aligns with a period of drought termina-
tion. Although Bonsal et al. (2011) went further
than most studies in characterising the spatio-
temporal evolution of drought termination, the

sub-divisions were defined using thresholds of
spatial extent. The ‘Retreat’ phase was
assigned after the ‘Peak’ for months in which
between 50% and 10% of the study area was
under severe drought or worse, according to
thresholds of the SPI and the PDSI. Given the
variability of spatial and temporal signatures of
droughts (Parry et al., 2012), this might not
always be the most appropriate way to categor-
ise drought periods, because a drought may
intensify in time whilst decreasing in spatial
extent. Nkemdirim and Weber (1999) quanti-
fied the rate of return to normal conditions
based on increases in PDSI units per year,
which gives an indication of the magnitude of
change during drought termination.

1l Defining drought termination
and deriving metrics

I An improved definition of drought
termination

Studies in the ecological literature demonstrate
that the return to normal conditions at the end of
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a drought can often be protracted and complex.
It is important that drought termination is
associated with a duration over which condi-
tions return to ‘normal’, in order to character-
ise other properties of drought termination.
Here, an improved way of conceptualising
drought termination is proposed (Figure 2),
with a novel combination of drought termina-
tion metrics illustrated in Figure 3. A drought
period can be sub-divided at the point of the
maximum negative anomaly (e.g. Bravar and
Kavvas, 1991) into phases of ‘drought devel-
opment’ and ‘drought termination’, allowing
a duration for each of these phases to be
derived. The drought termination rate can be
calculated as the magnitude of change over
the drought termination duration, and the
drought termination seasonality is the sea-
son(s) encompassed by the drought termina-
tion duration.

2 Data pre-processing

The method of identifying drought termination
and associated properties is applicable to data
series that are ‘continuous’ and integrative
(e.g. river flows or groundwater levels) and
not ‘discrete’ (e.g. rainfall totals). Data for a
range of time steps (e.g. daily or monthly) can
be used. Ideally, time series should be com-
plete, but if data are aperiodic or missing,
averaging over longer time steps to counter
the irregularity of data is recommended.
Where small gaps of up to a few time steps
exist, interpolating using equipercentile
approaches (e.g. Harvey et al., 2012) or infill-
ing for less responsive variables (such as some
slowly responding groundwater levels) may be
appropriate. Infilling should be performed
where possible at the highest temporal resolu-
tion before any aggregation to longer time
steps.

Data must be transformed into percentage
departure from the long-term average (LTA)
calculated at each time step (equation (1)) to

enable comparison between different locations.
A standard reference period is recommended
(such as 1971-2000) although for shorter
records it may be necessary to take the average
of all data.

Zoianom, = 100(( Zaws, / Zura, ) 1) (1)

where i is the time step index, Zoanom, 1S the
percentage anomaly at i (Figure 3), Zy,, is the
observed value at i and Z; 74, is the LTA at i.
Note that the derived Zy,anom, Series may be sen-
sitive to the reference period over which the
LTAs are calculated.

3 Identifying drought development
and drought termination

3.1 Start of drought development. A drought
begins (t,4; Figure 3) when Zoanom, 1 negative
for a specified minimum number of time steps
(D; Figure 3). Within this number of time steps
(D), a specified number of time steps (R; Figure 3)
when Zyanom, 18 positive allows for extreme
wet events punctuating a period of sustained
deficit conditions.

3.2 End of drought termination and drought
termination magnitude. Drought termination ends
(ter; Figure 3) when Zygnom, 1S positive for a
specified number of consecutive time steps (7;
Figure 3). The drought termination magnitude
(TM; Figure 3) is Zyanom, at fet.

3.3 Drought magnitude, end of drought
development and start of drought termination. The
drought development phase ends (z.q; Figure 3)
at the time step of maximum negative Zyanom,
(DM; Figure 3) between 7y and z.,. Drought
termination starts at the next time step (#; Fig-
ure 3).

3.4 Drought development duration and drought
termination duration. The durations of the
drought development (DDD; Figure 3) and
drought termination (DTD; Figure 3) phases are
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Figure 2. Conceptual diagram of an alternative definition of drought termination. The grey line represents
the long-term average (LTA) value for each time step and the black line represents positive and negative

anomalies (%) from the LTA.

calculated by equation (2) and equation (3),
respectively.

DDD =tfq —tyq + 1 (2)
DID =14 —tg +1 (3)

3.5 Drought termination rate. The drought termi-
nation rate (DTR; Figure 3) is defined as the
magnitude of change from the maximum nega-
tive anomaly at £.q (DM) to the positive anomaly
at f; (TM), over the time taken to make this
transition (DTD). This calculation is illustrated
in equation (4).

DTR = (TM —DM ) / DTD (4)

3.6 Drought termination seasonality. The drought
termination seasonality is assigned as sequences
of seasons (spring, summer, autumn or winter)
between ¢ and 7. For example, if ¢ falls in
spring and 7., falls in autumn, the drought termi-
nation seasonality is ‘SSA’, referring to a
drought termination lasting through spring,
summer and autumn.

IV Exemplar application to the UK
drought of 2010-2012

Around a dozen severe droughts in the UK in the
last 150 years have been identified (Kendon et al.,
2013; Marsh et al., 2007; Wilby et al., 2015),
although how and why the droughts have ended
has received relatively little attention. One excep-
tion is the drought termination in 2012 (Parry et
al., 2013; although other notable drought termi-
nations have been reported for 1922, 1929, 1959,
1963, 1976, 1989 and 1992). Table 3 highlights a
number of recent UK droughts, briefly describing
their drought terminations and the associated
impacts. Although the drought termination in the
UK through the summer half-year in 2012 is
without modern parallel (Parry et al., 2013), dra-
matic drought terminations cannot generally be
viewed as rare or restricted to recent history.
The 2010-2012 drought was selected as a
case study to demonstrate the alternative con-
cept and metrics outlined in the previous sec-
tion. The methodology was applied to time
series of monthly data from January 2010 to
December 2012 (or to December 2013 for
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Figure 3. Conceptual diagram of the new drought termination metrics. The three parameters are as follows:
D is the number of below-average time steps required for the drought development phase to begin; R is the
number of intermittent above-average time steps permitted within D; and T is the number of above-average
time steps required for the end of drought termination. t.4 is the start of drought development, t.4 is the end
of drought development, t is the start of drought termination and t. is the end of drought termination. The
grey line represents the long-term average (LTA) value for each time step and the black line represents

positive and negative anomalies (%) from the LTA.

DDD: drought development duration; DTD: drought termination duration; DM: drought magnitude; TM:
termination magnitude; and DTR: drought termination rate.

groundwater levels). For river flow data,
monthly average discharges for 18 catchments
were used. For groundwater data, monthly aver-
age levels for 18 boreholes were used. All data
were obtained from the National River Flow
Archive and the National Groundwater Level
Archive. The locations of the river flow catch-
ments and groundwater level boreholes are
shown in Figure 4.

The parameter values chosen were based on
empirical analysis of the hydrometeorological
data. For hydrological and groundwater drought
termination, the same parameters have been
applied to all catchments and boreholes: D = 7;
R = 1; T = 2. Note that these parameters are
specific to the 2010-2012 event and might not
be appropriate for other locations, data types or
droughts within the historical record. The

drought termination duration, drought termina-
tion rate and drought termination seasonality
metrics (Figure 3) have been derived for the
2012 drought termination in the UK, illustrated
in Figure 5 and discussed below. Where regions
are shaded white, a drought was not identified in
2010-2012 according to the drought identifica-
tion parameters (D and R).

I Hydrological drought termination

The patterns of drought termination are hetero-
geneous for hydrological drought because catch-
ments act to modulate spatially coherent
meteorological inputs through differing geology
and land use. The majority of catchments in
Scotland did not satisfy the drought identifica-
tion parameters D and R, and, therefore, have no
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Figure 4. Sites used in the case study for the 2012 drought termination in the UK: |18 river flow catchments
(left panel) and 18 groundwater level boreholes (right panel).

drought termination characteristics (Figure 5).
Almost all studied catchments in southern Brit-
ain experienced rapid drought terminations of
two to five months. Positive rainfall anomalies
across a wide area were most exceptional over
the period April-July 2012, when soils rapidly
saturated and allowed river flows to rebound
sharply in many cases (Parry et al., 2013). Short
drought termination durations are reflected in
the high termination rates for many catchments.
When examining southern Britain more closely,
there appears to be a north-east to south-west
gradient, with termination rate increasing with
distance north and east into the English Mid-
lands. The slowly responding groundwater-
influenced tributaries in the Thames catchment
resulted in a more attenuated response to rain-
fall. Two of the largest catchments in the UK, the
Severn and Trent, terminated rapidly in spring in
response to the record rainfall in April 2012.

2 Groundwater drought termination

The groundwater drought termination metrics
are as spatially heterogeneous as the hydrologi-
cal metrics due to variations within and between
aquifers in terms of permeability and response
to rainfall inputs. The drought termination was
most rapid (four to six months) in the Chalk of
north-eastern and central southern England.
However, in the English Midlands, drought ter-
mination extended into the middle of 2013 for
the slowly responding Permo-Triassic sand-
stone boreholes. The drought termination rate
in some boreholes (e.g. New Red Lion, a
responsive borehole in the Lincolnshire Lime-
stone) was as abrupt as some of the surface
water catchments. Note that drought termina-
tion occurred through the summer half-year in
2012 for many boreholes, a season that is usu-
ally associated with high evaporative demand
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Figure 5. Drought termination metrics applied to the 2012 drought termination in the UK. Top: Hydro-
logical drought termination. Bottom: Groundwater drought termination. Left: Drought termination duration
(months). Centre: Drought termination rate (% per month). Right: Drought termination seasonality.

during which soil moisture deficits typically
limit infiltration and groundwater recharge
(Marsh et al., 2013).

3 Propagation of drought termination

One of the strengths of the approach used herein
for characterising drought termination is the

flexibility to apply it to different elements of the
hydrological cycle. This enables an assessment
of the propagation of drought termination
through the hydrological cycle, which has
important implications for water resources man-
agement at the end of drought, for example, by
allowing temporary water use restrictions to be
lifted (e.g. Parry et al., 2013). The drought
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termination seasonality (Figure 5) suggests that
hydrological and groundwater drought gener-
ally terminated simultaneously through the
summer half-year of 2012. Single-season
drought terminations were rare in 2012, reflect-
ing the severity of the deficiencies associated
with a notable multi-year drought. River flows
in some catchments were the only element of
the hydrological cycle able to respond in a sin-
gle season, over two months in winter (Welsh
Dee) or spring (Severn, Trent and Medway).
The responsiveness of river flows compared to
groundwater levels is reflected in the drought
termination rates for 2012, which were much
higher for hydrological drought termination
(Figure 5).

V Open research questions about
drought termination

The literature review has highlighted a number
of questions and knowledge gaps regarding
drought termination that remain unanswered.
These are listed in Table 4, grouped into broad
topics and discussed further below. It is antici-
pated that the drought termination methodology
presented in this study will help to address some
of these questions, and illustrative examples are
given below.

The likelihood of drought termination is of
particular interest to water resource managers.
This prompts questions about how much rainfall
is required for drought termination or to what
extent a given rainfall total ameliorates drought
conditions. A more complete understanding of
the answers to these two questions would make
a vital contribution to monitoring programmes
by assessing in near real-time the extent to
which drought termination has progressed in
different elements of the hydrological cycle. For
example, by monitoring river flows and ground-
water levels, it would be possible to detect lags
in drought termination through the hydrological
cycle, which may have important ramifications
for water resource management. River flows are

integrative in space and time, so drought termi-
nation as defined here could occur without fully
compensating for the deficit accumulated dur-
ing drought development. As such, the approach
applied herein could be used to estimate the
amount of rainfall required to increase river
flows from the maximum negative anomaly (the
drought magnitude) to above-normal condi-
tions. The flexibility of the approach has been
presented in this study for river flows and
groundwater levels. When also applied to rain-
fall, soil moisture and reservoir data, this would
provide a useful framework for investigating the
propagation of drought termination through a
range of different elements of the hydrological
cycle. An assessment of the ‘wettest droughts on
record’ could also provide valuable information
on how the seasonal partitioning of rainfall is
important in determining drought development
and drought termination.

Knowledge of the characteristics of drought
termination in the historical record is incom-
plete (Marsh et al., 2013). Drought termination
is a complex and sometimes protracted phenom-
enon that is not necessarily complete once rain-
fall returns, a lesson learned particularly from
the ecological literature. A systematic analysis
of past drought terminations is a necessary first
step towards understanding its historical varia-
bility and improving our understanding of the
physical processes. Capitalising on long hydro-
metric records will be most useful in identifying
the largest possible range of scenarios for
drought termination. Forthcoming work will
apply the methodology presented in this study
systematically to river flow and groundwater
level data, including to very long hydrometric
records in the UK (Parry et al., 2015), to pro-
duce chronologies of drought termination and
thereby provide greater insight into its historical
variability. Once a large sample size of
observed drought terminations has been deli-
neated, classifying episodes into a typology
may help to assess potential similarities in driv-
ers and impacts. A larger catalogue of drought
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Table 4. Open questions for drought termination research.

Topic

Research Questions

Defining drought termination

Cataloguing drought terminations

Drought termination characteristics
Interactions between drought

development and drought termination

Drought termination processes

Modelling drought termination

Monitoring / forecasting drought
termination

What is a drought termination and how is it defined?

What appropriate, objective drought termination indices can be
derived?

How well does the approach perform in a range of geographic
settings?

How well does the approach perform when applied to different
environmental variables, including discrete data (e.g. rainfall)?

To what extent is a universal typology for drought terminations
feasible?

How does drought termination propagate through the
hydrological cycle?

How much rainfall is required for drought termination to occur?

What was the wettest drought on record in the UK?

To what extent do characteristics of drought development
influence the characteristics of drought termination?

What are the potential critical thresholds in hydrometeorology
that cause drought termination?

What are the different mechanisms driving abrupt and gradual
drought terminations?

What are the impacts of catchment characteristics on drought
termination?

To what extent are climate and hydrological models able to
simulate observed drought termination events?

What are the climate model projections of drought termination
characteristics?

When provided within a drought, how accurate and useful are
probabilistic outlooks of the likelihood of drought termination?

termination episodes would also improve the
robustness of subjectively defined parameters
in the methodology (D, R and 7).

Assessments of the drivers of drought termi-
nation have usually been conducted on an event
basis (such as the influence of the Atlantic Mul-
tidecadal Oscillation on the 2012 drought termi-
nation in the UK; Sutton and Dong, 2012).
Where multiple events have been considered,
the link has usually been made to a single driv-
ing mechanism (e.g. landfalling hurricanes in
the USA; Maxwell et al., 2013). There is a need
for a more robust analysis of the drivers of
drought termination, which will be made possi-
ble by the systematic identification of drought
termination events in the historical record. The

approach presented in this study, which identi-
fies a duration over which drought termination
occurs, is of critical importance because cli-
matic indices can be analysed over a period of
time that has been omitted from existing defini-
tions of drought termination. Seasonal forecasts
of large-scale synoptic conditions (e.g. the
North Atlantic Oscillation or the ENSO) could
contribute to improved outlooks for drought
development and the transition to and comple-
tion of drought termination (e.g. Wedgbrow
et al., 2002).

Given that an assessment of historical varia-
bility is a necessary precursor to understanding
future change, even less research has been
devoted to future projections of drought
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termination characteristics. Climate change
projections for the UK suggest that, on average,
winters could become wetter and summers
could become drier (Jenkins et al., 2009),
implying shorter, more punctuated droughts in
future. Droughts are also projected to increase
in severity at a variety of spatial scales (Burke
etal., 2010; Prudhomme et al., 2014). Addition-
ally, there is evidence that a higher proportion of
rainfall is falling in more intense events (Jones
et al., 2013), and that summer rainfall is pro-
jected to become more intense in future (Ken-
don et al., 2014). Research is needed to translate
these hypotheses into potential changes in
drought termination characteristics. The metho-
dology introduced in this study could be applied
to synthetic data or future projections for a
range of hydrometeorological variables, and the
flexibility of the approach in application to a
range of time steps may be useful where daily
or only monthly data are available for future
scenarios.

In order to project future drought termination
characteristics, climate model information will
be required. Prior to this, there is a need to
assess the extent to which a range of lumped
catchment and distributed models are able to
reproduce drought terminations observed in the
historical record. It is recommended that a sys-
tematic analysis of drought termination in
observed hydrometeorological records would
provide the baseline for any such assessment
of model performance. Models would also be
an essential component of any monitoring and
forecasting tool. For example, seasonal rainfall
forecasts could drive hydrological and aquifer
models to provide outlooks of river flows and
groundwater levels, respectively. Applying the
methodology and metrics presented herein to
these outlooks could provide likelihoods of
drought termination over seasonal timescales.

It is unclear to what extent characteristics of
drought development (as initial conditions)
influence those of drought termination. Land—
atmosphere feedbacks have been shown to

influence drought conditions (e.g. Bagley
et al., 2014; Roundy et al., 2013), as well as the
location of storm tracks (Pal and Eltahir, 2003)
which may subsequently impact spatial varia-
tions in drought termination. One potential
feedback mechanism between drought develop-
ment and drought termination has been sug-
gested for the Amazon: during intense
drought, the increased occurrence of natural
fires ejects aerosols into the atmosphere which
have the potential to influence the timing and
magnitude of rainfall (Marengo et al., 2008).

The 1975-1976 and 2010-2012 droughts
were two of the most severe droughts on record
in the UK (Marsh et al., 2013), and it has been
suggested that both events terminated abruptly
(Doornkamp et al., 1980; Parry et al., 2013).
The relationships between drought termination
rate and drought development duration or
drought magnitude have yet to be explored sys-
tematically, potentially providing information
on the existence of critical thresholds for atmo-
spheric or terrestrial conditions. The delineation
of drought development and drought termina-
tion periods provides an appropriate framework
for investigating the extent to which the charac-
teristics of drought development and drought
termination are related.

The methodology outlined in this paper has
been tested using river flow and groundwater
level data from the UK. However, it is envi-
saged that the approach could be applied to
other hydroclimatic regions, catchment types
(e.g. differing hydrogeological setting or land
use) or environmental variables (e.g. rainfall,
reservoir, lake level or water quality data). For
example, in regions that receive substantial
snowfall, lags between meteorological and
hydrological drought terminations are likely
(Van Loon et al., 2014). It is envisaged that the
methodology would be useful in characterising
the propagation of drought termination through
the hydrological cycle from rainfall to soil
moisture, river flows and groundwater, but the
transferability of the method requires further
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development and testing, particularly when
applying the approach to discrete data such as
rainfall. The assignment of parameter values
may require sensitivity analyses to be
performed.

Even following a multi-year period of below-
average river flows, a single month of above-
average flows may cause substantial flooding
and replenish water resources. In such circum-
stances, it is not necessary to account for an
accumulated deficit volume before drought ter-
mination is complete. The approach adopted
herein has been developed with a focus on the
dynamics of river flows (which are already
naturally integrative) and to identify and char-
acterise drought termination rather than its long-
term impacts. Nevertheless, it is acknowledged
that cumulative deficit volume approaches
make an important contribution to other studies
on the recovery from drought, particularly those
associated with the concept of resilience.

VI Concluding remarks

This review has sought to summarise the
breadth of existing literature on drought termi-
nation and to recommend an alternative
approach that identifies drought termination as
a period of a drought with characteristics of
duration, rate and seasonality. The case study
material on the 2010-2012 drought in the UK
provides an illustration of the utility of the
approach, although a more comprehensive anal-
ysis of the spatial and temporal variability in the
characteristics and propagation of drought ter-
mination is required. The review concludes with
an assessment of key knowledge gaps in relation
to drought termination and it is hoped that the
approach advocated here is capable of addres-
sing some of these research questions.

It is envisaged that answers to the questions
outlined in Table 4 and discussed above could
inform the development of monitoring and fore-
casting capabilities for drought termination.
Improved knowledge of how catchments and

aquifers respond spatially and temporally to
rainfall during a drought may benefit water
resource decisions and public awareness cam-
paigns. Additionally, this information could
potentially mitigate against some of the nega-
tive impacts of transitions from water deficit to
normal conditions or water surplus. Information
on the progression of drought termination in
space and time and through the hydrological
cycle would be particularly helpful in water
resource zones underlain by aquifers with dif-
fering response times to rainfall (such as the
Thames catchment, the largest in the UK, which
has substantial water demands). A monitoring
and forecasting tool could be combined with
seasonal rainfall forecasts to produce probabil-
istic outlooks of the likelihood and characteris-
tics of drought termination. The approach
presented in this study has many desirable prop-
erties that can begin to provide answers to some
of these important unresolved questions sur-
rounding drought termination.
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