1,331 research outputs found

    Type 2 Diabetes Mellitus: New Genetic Insights will Lead to New Therapeutics

    Get PDF
    Type 2 diabetes is a disorder of dysregulated glucose homeostasis. Normal glucose homeostasis is a complex process involving several interacting mechanisms, such as insulin secretion, insulin sensitivity, glucose production, and glucose uptake. The dysregulation of one or more of these mechanisms due to environmental and/or genetic factors, can lead to a defective glucose homeostasis. Hyperglycemia is managed by augmenting insulin secretion and/or interaction with hepatic glucose production, as well as by decreasing dietary caloric intake and raising glucose metabolism through exercise. Although these interventions can delay disease progression and correct blood glucose levels, they are not able to cure the disease or stop its progression entirely. Better management of type 2 diabetes is sorely needed. Advances in genotyping techniques and the availability of large patient cohorts have made it possible to identify common genetic variants associated with type 2 diabetes through genome-wide association studies (GWAS). So far, genetic variants on 19 loci have been identified. Most of these loci contain or lie close to genes that were not previously linked to diabetes and they may thus harbor targets for new drugs. It is also hoped that further genetic studies will pave the way for predictive genetic screening. The newly discovered type 2 diabetes genes can be classified based on their presumed molecular function, and we discuss the relation between these gene classes and current treatments. We go on to consider whether the new genes provide opportunities for developing alternative drug therapies

    Meta-Analysis of Genome-Wide Linkage Studies in Celiac Disease.

    Get PDF
    OBJECTIVE: A meta-analysis of genome-wide linkage studies allows us to summarize the extensive information available from family-based studies, as the field moves into genome-wide association studies. METHODS: Here we apply the genome scan meta-analysis (GSMA) method, a rank-based, model-free approach, to combine results across eight independent genome-wide linkages performed on celiac disease (CD), including 554 families with over 1,500 affected individuals. We also investigate the agreement between signals we identified from this meta-analysis of linkage studies and those identified from genome-wide association analysis using a hypergeometric distribution. RESULTS: Not surprisingly, the most significant result was obtained in the HLA region. Outside the HLA region, suggestive evidence for linkage was obtained at the telomeric region of chromosome 10 (10q26.12-qter; p = 0.00366), and on chromosome 8 (8q22.2-q24.21; p = 0.00491). Testing signals of association and linkage within bins showed no significant evidence for co-localization of results. CONCLUSION: This meta-analysis allowed us to pool the results from available genome-wide linkage studies and to identify novel regions potentially harboring predisposing genetic variation contributing to CD. This study also shows that linkage and association studies may identify different types of disease-predisposing variants

    Identification of TUB as a novel candidate gene influencing body weight in humans

    Get PDF
    Previously, we identified a locus on 11p influencing obesity in families with type 2 diabetes. Based on mouse studies, we selected TUB as a functional candidate gene and performed association studies to determine whether this controls obesity. We analyzed the genotypes of 13 single nucleotide polymorphisms (SNPs) around TUB in 492 unrelated type 2 diabetic patients with known BMI values. One SNP (rs1528133) was found to have a significant effect on BMI (1.54 kg/m(2), P = 0.006). This association was confirmed in a population enriched for type 2 diabetes, using 750 individuals who were not selected for type 2 diabetes. Two SNPs in linkage disequilibrium with rs1528133 and mapping to the 3' end of TUB, rs2272382, and rs2272383 also affected BMI by 1.3 kg/m2 (P = 0.016 and P = 0.010, respectively). Combined analysis confirmed this association (P = 0.005 and P = 0.002, respectively). Moreover, comparing 349 obese subjects (BMI >30 kg/m(2)) from the combined cohort with 289 normal subjects (BMI <25 kg/m(2)) revealed that the protective alleles have a lower frequency in obese subjects (odds ratio 1.32 [95% CI 1.04-1.67], P = 0.022). Altogether, data from the tubby mouse as well as these data suggest that TUB could be an important factor in controlling the central regulation of body weight in humans

    Non-classical clinical presentation at diagnosis by male celiac disease patients of older age

    Get PDF
    BACKGROUND: . In a biopsy-proven adult celiac disease (CeD) cohort from the Netherlands, male patients were diagnosed with CeD at significantly older ages than female patients. OBJECTIVES: To identify which factors contribute to diagnosis later in life and whether diagnostic delay influences improvement of symptoms after starting a gluten-free diet (GFD). METHODS: . We performed a questionnaire study in 211 CeD patients (67:144, male:female) with median age at diagnosis of 41.8 years (interquartile range: 25-58) and at least Marsh 2 histology. RESULTS: . Classical symptoms (diarrhea, fatigue, abdominal pain and/or weight loss) were more frequent in women than men, but sex was not significantly associated with age at diagnosis. In a multivariate analysis, a non-classical presentation (without any classical symptoms) and a negative family history of CeD were significant predictors of older age at diagnosis (coefficients of 8 and 12 years, respectively). A delay of >3 years between first symptom and diagnosis was associated with slower improvement of symptoms after start of GFD, but not with sex, presentation of classical symptoms or age at diagnosis. CONCLUSION: . Non-classical CeD presentation is more prevalent in men and is associated with a diagnosis of CeD later in life. Recognizing CeD sooner after onset of symptoms is important because a long diagnostic delay is associated with a slower improvement of symptoms after starting a GFD

    Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study

    Get PDF
    Analysis of genome-wide responses to changing copper and iron levels in budding and fission yeast reveals conservation of only a small core set of genes and remarkable differences in the responses of the two yeasts to excess copper

    Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD

    Get PDF
    Background: Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers

    Complex nature of SNP genotype effects on gene expression in primary human leucocytes.

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.BACKGROUND: Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. METHODS: We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease - a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects. RESULTS: In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, cis expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. CONCLUSION: In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.Coeliac UKNetherlands Organization for Scientific ResearchCeliac Disease Consortium (an innovative cluster approved by the Netherlands Genomics Initiative and partly funded by the Dutch government)Netherlands Genomics InitiativeWellcome Trus

    Detection of stable community structures within gut microbiota co-occurrence networks from different human populations

    Get PDF
    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses
    corecore