303 research outputs found

    Magneto-optical response of layers of semiconductor quantum dots and nanorings

    Get PDF
    In this paper a comparative theoretical study was made of the magneto-optical response of square lattices of nanoobjects (dots and rings). Expressions for both the polarizability of the individual objects as their mutual electromagnetic interactions (for a lattice in vacuum) was derived. The quantum-mechanical part of the derivation is based upon the commonly used envelope function approximation. The description is suited to investigate the optical response of these layers in a narrow region near the interband transitions onset, particularly when the contribution of individual level pairs can be separately observed. A remarkable distinction between clearly quantum-mechanical and classical electromagnetic behavior was found in the shape and volume dependence of the polarizability of the dots and rings. This optical response of a single plane of quantum dots and nanorings was explored as a function of frequency, magnetic field, and angle of incidence. Although the reflectance of these layer systems is not very strong, the ellipsometric angles are large. For these isolated dot-ring systems they are of the order of magnitude of degrees. For the ring systems a full oscillation of the optical Bohm-Ahronov effect could be isolated. Layers of dots do not display any remarkable magnetic field dependence. Both type of systems, dots and rings, exhibit an outspoken angular-dependent dichroism of quantum-mechanical origin

    Emission Spectra from Internal Shocks in Gamma-Ray-Burst Sources

    Get PDF
    Unsteady activity of gamma-ray burst sources leads to internal shocks in their emergent relativistic wind. We study the emission spectra from such shocks, assuming that they produce a power-law distribution of relativistic electrons and posses strong magnetic fields. The synchrotron radiation emitted by the accelerated electrons is Compton up-scattered multiple times by the same electrons. A substantial component of the scattered photons acquires high energies and produces e+e- pairs. The pairs transfer back their kinetic energy to the radiation through Compton scattering. The generic spectral signature from pair creation and multiple Compton scattering is highly sensitive to the radius at which the shock dissipation takes place and to the Lorentz factor of the wind. The entire emission spectrum extends over a wide range of photon energies, from the optical regime up to TeV energies. For reasonable values of the wind parameters, the calculated spectrum is found to be in good agreement with the burst spectra observed by BATSE.Comment: 12 pages, latex, 2 figures, submitted to ApJ

    Discrete structure of ultrathin dielectric films and their surface optical properties

    Get PDF
    The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin dielectric film has been solved under explicit consideration of its discrete structure. The main attention has been paid to the investigation of the near-zone optical response of dielectrics. The laws of reflection and refraction for discrete structures in the case of a regular atomic distribution are studied and the structure of evanescent harmonics induced by an external plane wave near the surface is investigated in details. It is shown by means of analytical and numerical calculations that due to the existence of the evanescent harmonics the laws of reflection and refraction at the distances from the surface less than two interatomic distances are principally different from the Fresnel laws. From the practical point of view the results of this work might be useful for the near-field optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.

    The Evolution of Relativistic Binary Progenitor Systems

    Get PDF
    Relativistic binary pulsars, such as B1534+12 and B1913+16 are characterized by having close orbits with a binary separation of ~ 3 R_\sun. The progenitor of such a system is a neutron star, helium star binary. The helium star, with a strong stellar wind, is able to spin up its compact companion via accretion. The neutron star's magnetic field is then lowered to observed values of about 10^{10} Gauss. As the pulsar lifetime is inversely proportional to its magnetic field, the possibility of observing such a system is, thus, enhanced by this type of evolution. We will show that a nascent (Crab-like) pulsar in such a system can, through accretion-braking torques (i.e. the "propeller effect") and wind-induced spin-up rates, reach equilibrium periods that are close to observed values. Such processes occur within the relatively short helium star lifetimes. Additionally, we find that the final outcome of such evolutionary scenarios depends strongly on initial parameters, particularly the initial binary separation and helium star mass. It is, indeed, determined that the majority of such systems end up in the pulsar "graveyard", and only a small fraction are strongly recycled. This fact might help to reconcile theoretically expected birth rates with limited observations of relativistic binary pulsars.Comment: 24 pages, 10 Postscript figures, Submitted to The Astrophysical Journa

    Evolution of the polarization of the optical afterglow of the gamma-ray burst GRB 030329

    Full text link
    We report 31 polarimetric observations of the afterglow of GRB 030329 with high signal-to-noise and high sampling frequency. We establish the polarization light curve, detect sustained polarization at the percent level, and find significant variability of polarization degree and angle. The data imply that the afterglow magnetic field has small coherence length and is mostly random, probably generated by turbulence.Comment: Nature 426 (13. Nov. 2003), 2 figure

    Optical and Radio Observations of the Afterglow from GRB990510: Evidence for a Jet

    Get PDF
    We present multi-color optical and two-frequency radio observations of the bright SAX event, GRB 990510. The well-sampled optical decay, together with the radio observations are inconsistent with simple spherical afterglow models. The achromatic optical steepening and the decay of the radio afterglow both occuring at t1t \sim 1 day are evidence for hydrodynamical evolution of the source, and can be most easily interpreted by models where the GRB ejecta are collimated in a jet. Employing a simple jet model to interpret the observations, we derive a jet opening angle of θo=0.08\theta_o = 0.08, reducing the isotropic gamma-ray emission of 2.9×10532.9 \times 10^{53} erg by a factor 300\sim 300. If the jet interpretation is correct, we conclude that GRB observations to-date are consistent with an energy for the central source of E \lsim 10^{52} erg.Comment: 12 pages, 2 figures. Version accepted for publication in ApJ Letter

    Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    Get PDF
    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time.We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of Ṁ ≾ 10^(−8)(w/100 km s^(−1))M_☉ yr^(−1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia

    Observations of GRB 990123 by the Compton Gamma-Ray Observatory

    Get PDF
    GRB 990123 was the first burst from which simultaneous optical, X-ray and gamma-ray emission was detected; its afterglow has been followed by an extensive set of radio, optical and X-ray observations. We have studied the gamma-ray burst itself as observed by the CGRO detectors. We find that gamma-ray fluxes are not correlated with the simultaneous optical observations, and the gamma-ray spectra cannot be extrapolated simply to the optical fluxes. The burst is well fit by the standard four-parameter GRB function, with the exception that excess emission compared to this function is observed below ~15 keV during some time intervals. The burst is characterized by the typical hard-to-soft and hardness-intensity correlation spectral evolution patterns. The energy of the peak of the nu f_nu spectrum, E_p, reaches an unusually high value during the first intensity spike, 1470 +/- 110 keV, and then falls to \~300 keV during the tail of the burst. The high-energy spectrum above ~MeV is consistent with a power law with a photon index of about -3. By fluence, GRB 990123 is brighter than all but 0.4% of the GRBs observed with BATSE, clearly placing it on the -3/2 power-law portion of the intensity distribution. However, the redshift measured for the afterglow is inconsistent with the Euclidean interpretation of the -3/2 power-law. Using the redshift value of >= 1.61 and assuming isotropic emission, the gamma-ray fluence exceeds 10E54 ergs.Comment: Submitted to The Astrophysical Journal. 16 pages including 4 figure

    The optical/near-IR spectral energy distribution of the GRB 000210 host galaxy

    Full text link
    We report on UBVRIZJsHKs-band photometry of the dark GRB 000210 host galaxy. Fitting a grid of spectral templates to its Spectral Energy Distribution (SED), we derived a photometric redshift (z=0.842\+0.0540.042) which is in excellent agreement with the spectroscopic one (z=0.8463+/-0.0002; Piro et al. 2002). The best fit to the SED is obtained with a blue starburst template with an age of 0.181\+0.0370.026 Gyr. We discuss the implications of the inferred low value of Av and the age of the dominant stellar population for the non detection of the GRB 000210 optical afterglow.Comment: 4 pages, 1 figure, contribution to the Rome 2002 GRB worksho
    corecore