57 research outputs found

    An automated archival VLA transients survey

    Get PDF
    In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - i.e. the calibrator fields. These fields typically contain a relatively bright point source and are used to calibrate 'target' observations: they are therefore rarely imaged themselves. The observations used span a time range ˜1984-2008 and consist of eight different pointings, three different frequencies (8.4, 4.8 and 1.4 GHz) and have a total observing time of 435 h. We have searched for transient and variable radio sources within these observations using components from the prototype LOFAR transient detection system. In this paper we present the methodology for reducing large volumes of Very Large Array data; and we also present a brief overview of the prototype LOFAR transient detection algorithms. No radio transients were detected in this survey, therefore we place an upper limit on the snapshot rate of GHz frequency transients >8.0 mJy to ρ≤ 0.032 deg-2 that have typical time-scales 4.3 to 45.3 d. We compare and contrast our upper limit with the snapshot rates - derived from either detections or non-detections of transient and variable radio sources - reported in the literature. When compared with the current Log N-Log S distribution formed from previous surveys, we show that our upper limit is consistent with the observed population. Current and future radio transient surveys will hopefully further constrain these statistics, and potentially discover dominant transient source populations. In this paper we also briefly explore the current transient commissioning observations with LOFAR, and the impact they will make on the field

    Rapid-response radio observations of short GRB 181123B with the Australia Telescope Compact Array

    Get PDF
    We introduce the Australia Telescope Compact Array (ATCA) rapid-response mode by presenting the first successful trigger on the short-duration gamma-ray burst (GRB) 181123B. Early-time radio observations of short GRBs may provide vital insights into the radio afterglow properties of Advanced LIGO- and Virgo-detected gravitational wave events, which will in turn inform follow-up strategies to search for counterparts within their large positional uncertainties. The ATCA was on target within 12.6 hr post-burst, when the source had risen above the horizon. While no radio afterglow was detected during the 8.3 hr observation, we obtained force-fitted flux densities of 7±127 \pm 12 and 15±11 μ15 \pm 11~\muJy at 5.5 and 9 GHz, respectively. Afterglow modelling of GRB 181123B showed that the addition of the ATCA force-fitted radio flux densities to the Swift X-ray Telescope detections provided more stringent constraints on the fraction of thermal energy in the electrons (logϵe=0.750.40+0.39\epsilon_e = -0.75^{+0.39}_{-0.40} rather than logϵe=1.131.2+0.82\epsilon_e = -1.13^{+0.82}_{-1.2} derived without the inclusion of the ATCA values), which is consistent with the range of typical ϵe\epsilon_e derived from GRB afterglow modelling. This allowed us to predict that the forward shock may have peaked in the radio band 10\sim10 days post-burst, producing detectable radio emission 34\gtrsim3-4 days post-burst. Overall, we demonstrate the potential for extremely rapid radio follow-up of transients and the importance of triggered radio observations for constraining GRB blast wave properties, regardless of whether there is a detection, via the inclusion of force-fitted radio flux densities in afterglow modelling efforts.Comment: 15 pages, 7 figures, accepted for publication in MNRA

    A very brief description of LOFAR - the Low Frequency Array

    Get PDF
    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering makes retrospective imaging of explosive short-term events possible. The scientific focus of LOFAR will initially be on four key science projects (KSPs): 1) detection of the formation of the very first stars and galaxies in the universe during the so-called epoch of reionization by measuring the power spectrum of the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5' scale; 2) low-frequency surveys of the sky with of order 10810^8 expected new sources; 3) all-sky monitoring and detection of transient radio sources such as gamma-ray bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003) allowing for the first time access to particles beyond 10^21 eV (Scholten et al. 2006). Apart from the KSPs open access for smaller projects is also planned. Here we give a brief description of the telescope.Comment: 2 pages, IAU GA 2006, Highlights of Astronomy, Volume 14, K.A. van der Hucht, e

    Rapid-response radio observations of short GRB 181123B with the Australia Telescope Compact Array

    Get PDF
    We introduce the Australia Telescope Compact Array (ATCA) rapid-response mode by presenting the first successful trigger on the short-duration gamma-ray burst (GRB) 181123B. Early-time radio observations of short GRBs may provide vital insights into the radio afterglow properties of Advanced LIGO- and Virgo-detected gravitational wave events, which will in turn inform follow-up strategies to search for counterparts within their large positional uncertainties. The ATCA was on target within 12.6 hr post-burst, when the source had risen above the horizon. While no radio afterglow was detected during the 8.3 hr observation, we obtained force-fitted flux densities of 7±127 \pm 12 and 15±11 μ15 \pm 11~\muJy at 5.5 and 9 GHz, respectively. Afterglow modelling of GRB 181123B showed that the addition of the ATCA force-fitted radio flux densities to the Swift X-ray Telescope detections provided more stringent constraints on the fraction of thermal energy in the electrons (logϵe=0.750.40+0.39\epsilon_e = -0.75^{+0.39}_{-0.40} rather than logϵe=1.131.2+0.82\epsilon_e = -1.13^{+0.82}_{-1.2} derived without the inclusion of the ATCA values), which is consistent with the range of typical ϵe\epsilon_e derived from GRB afterglow modelling. This allowed us to predict that the forward shock may have peaked in the radio band 10\sim10 days post-burst, producing detectable radio emission 34\gtrsim3-4 days post-burst. Overall, we demonstrate the potential for extremely rapid radio follow-up of transients and the importance of triggered radio observations for constraining GRB blast wave properties, regardless of whether there is a detection, via the inclusion of force-fitted radio flux densities in afterglow modelling efforts

    New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR

    Get PDF
    We report on the results of a search for radio transients between 115 and 190 MHz with the LOw-Frequency ARray (LOFAR). Four fields have been monitored with cadences between 15 minutes and several months. A total of 151 images were obtained, giving a total survey area of 2275 deg2. We analysed our data using standard LOFAR tools and searched for radio transients using the LOFAR Transients Pipeline (TraP). No credible radio transient candidate has been detected; however, we are able to set upper limits on the surface density of radio transient sources at low radio frequencies. We also show that low-frequency radio surveys are more sensitive to steep-spectrum coherent transient sources than GHz radio surveys. We used two new statistical methods to determine the upper limits on the transient surface density. One is free of assumptions on the flux distribution of the sources, while the other assumes a power-law distribution in flux and sets more stringent constraints on the transient surface density. Both of these methods provide better constraints than the approach used in previous works. The best value for the upper limit we can set for the transient surface density, using the method assuming a power-law flux distribution, is 1.3 · 10-3 deg-2 for transients brighter than 0.3 Jy with a time-scale of 15 min, at a frequency of 150 MHz. We also calculated for the first time upper limits for the transient surface density for transients of different time-scales. We find that the results can differ by orders of magnitude from previously reported, simplified estimates
    corecore