56 research outputs found

    Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response

    Get PDF
    OBJECTIVE: To investigate the synovial tissue in patients with rheumatoid arthritis (RA) treated with rituximab and to identify possible predictors of clinical response. METHODS: A total of 24 patients with RA underwent synovial biopsy before, 4 and 16 weeks after initiation of rituximab treatment (without peri-infusional corticosteroids to prevent bias). Immunohistochemical analysis was performed and stained sections were analysed by digital image analysis. Linear regression analysis was used to identify predictors of clinical response. RESULTS: The 28-joint Disease Activity Score (DAS28) was unaltered at 4 weeks, but significantly reduced at 16 and 24 weeks. Serum levels of IgM-rheumatoid factor (RF) decreased significantly at 24 weeks and anti-citrullinated peptide antibody (ACPA) levels at 36 weeks. Peripheral blood B cells were depleted at 4 weeks and started to return at 24 weeks. Synovial B cells were significantly decreased at 4 weeks, but were not completely depleted in all patients; there was a further reduction at 16 weeks in some patients. We found a significant decrease in macrophages at 4 weeks, which was more pronounced at 16 weeks. At that timepoint, T cells were also significantly decreased. The reduction of plasma cells predicted clinical improvement at 24 weeks. CONCLUSIONS: The results support the view that B cells orchestrate local cellular infiltration. The kinetics of the serological as well as the tissue response in clinical responders are consistent with the notion that rituximab exerts its effects in part by an indirect effect on plasma cells associated with autoantibody production, which could help explain the delayed response after rituximab treatmen

    TWEAK and its receptor Fn14 in the synovium of patients with rheumatoid arthritis compared to psoriatic arthritis and its response to tumour necrosis factor blockade

    Get PDF
    Objective: To investigate the expression of tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor inducible 14 (Fn14) in the inflamed synovium of patients with arthritis, as TWEAK blockade has been observed to have a beneficial effect in an animal model of rheumatoid arthritis (RA). Methods: Synovial tissue (ST) biopsies were obtained from 6 early, methotrexate-naive patients with RA as well as 13 patients with RA and 16 patients with psoriatic arthritis (PsA) who were matched for treatment and disease duration. Serial ST samples were obtained from a separate cohort of 13 patients with RA before and after infliximab treatment. TWEAK and Fn14 expression was evaluated by immunohistochemistry and digital image analysis. Results: TWEAK and Fn14 were clearly expressed in ST of patients with RA and PsA. TWEAK expression was significantly higher in RA (sub) lining samples compared to PsA (p = 0.005 and p = 0.014, respectively), but Fn14 expression was comparable. Double immunofluorescence showed TWEAK and Fn14 expression on fibroblast-like synoviocytes and macrophages, but not T cells. Of interest, persistent TWEAK and Fn14 expression was found after anti-TNF therapy. Conclusions: TWEAK and Fn14 are abundantly expressed in the inflamed synovium of patients with RA and PsA. This raises the possibility that blocking TWEAK/Fn14 signalling could be of therapeutic benefit in inflammatory arthriti

    The clinical response to infliximab in rheumatoid arthritis is in part dependent on pretreatment tumour necrosis factor α expression in the synovium

    Get PDF
    Objective: To determine whether the heterogeneous clinical response to tumour necrosis factor (TNF)alpha blocking therapy in rheumatoid arthritis (RA) can be predicted by TNF alpha expression in the synovium before initiation of treatment. Methods: Prior to initiation of infliximab treatment, arthroscopic synovial tissue biopsies were obtained from 143 patients with active RA. At week 16, clinical response was evaluated using the 28-joint Disease Activity Score (DAS28). Immunohistochemistry was used to analyse the cell infiltrate as well as the expression of various cytokines, adhesion molecules and growth factors. Stained sections were evaluated by digital image analysis. Student t tests were used to compare responders (decrease in DAS28 >= 1.2) with non-responders (decrease in DAS28 <1.2) and multivariable regression was used to identify the independent predictors of clinical response. Results: Synovial tissue analysis confirmed our hypothesis that the baseline level of TNF alpha expression is a significant predictor of response to TNF alpha blocking therapy. TNF alpha expression in the intimal lining layer and synovial sublining were significantly higher in responders than in non-responders (p = 0.047 and p = 0.008, respectively). The numbers of macrophages, macrophage subsets and T cells (all able to produce TNF alpha) were also significantly higher in responders than in non-responders. The expression of interleukin (IL)1 beta, IL6, IL18, IL10, E-selectin, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was not associated with response to anti-TNF alpha treatment. Conclusion: The effects of TNF alpha blockade are in part dependent on synovial TNF alpha expression and infiltration by TNF alpha producing inflammatory cells. Clinical response cannot be predicted completely, indicating involvement of other as yet unknown mechanism

    Sustained changes in lipid profile and macrophage migration inhibitory factor levels after anti-tumour necrosis factor therapy in rheumatoid arthritis

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) has recently emerged as an important cytokine possibly linking rheumatoid arthritis (RA) and atherogenesis. Because atherogenesis is accelerated in RA this study was conducted to investigate whether anti-tumour necrosis factor (TNF) therapy could lead to sustained downregulation of systemic MIF levels and improvement in lipid profiles. METHODS: Fifty RA patients with active disease (disease activity score in 28 joints (DAS28) >or=3.2), who started adalimumab therapy at 40 mg every other week, were included. At baseline, weeks 16 and 52 serum levels of MIF and lipids were assessed. In addition, the DAS28 and serum C-reactive protein (CRP) levels and erythrocyte sedimentation rate (ESR) were determined. RESULTS: After 16 weeks of adalimumab therapy, both DAS28 and MIF levels were significantly decreased (p<0.001 and p = 0.020, respectively). This was sustained up to week 52 (p<0.001 and p = 0.012, respectively). CRP levels and ESR were significantly reduced after 16 and 52 weeks of adalimumab therapy (p<0.001). High-density lipoprotein cholesterol levels increased at week 16 (p<0.001), but returned to baseline at week 52. Apolipoprotein (apo) A-I levels increased at week 16 (p<0.001) and remained stable (p = 0.005). This resulted in an improved apo B/A-I ratio. CONCLUSIONS: The results underline the sustained downregulation of MIF as a potential new mechanism by which anti-TNF therapy might reduce vascular inflammation, and as such perhaps cardiovascular morbidity in RA patients. This hypothesis is supported by an improved apo B/A-I ratio as well as reduced CRP levels in these patient

    Monocyte migration to the synovium in rheumatoid arthritis patients treated with adalimumab

    Get PDF
    Objectives The mechanism of action of treatment with tumour necrosis factor (TNF) blockers in rheumatoid arthritis (RA) is still not completely understood. The aim of this study was to test if adalimumab treatment could affect the influx of monocytes into the synovium. Methods A novel technique was used to analyse the migration of labelled autologous monocytes before and 14 days after initiation of adalimumab treatment using scintigraphy. CD14 monocytes were isolated from patients with RA, using a positive selection procedure with magnetic-activated cell sorting, and labelled with technetium-99m-hexamethylpropylene-amino-oxime. Scintigraphic scans were made 1, 2 and 3 h after re-infusion. Results As early as 14 days after the start of treatment with adalimumab a significant decrease in disease activity score evaluated in 28 joints was shown. There was no significant decrease in the influx of monocytes into the joint at this time. Conclusions This study indicates that adalimumab treatment does not reduce the influx of monocytes into the synovium early after initiation of treatment. As previous studies showed a rapid decrease in macrophage infiltration after TNF-antibody therapy, which could not be explained by increased cell death, this points to an important role for enhanced efflux of inflammatory cells from the synoviu

    Antibody development and disease severity of COVID-19 in non-immunised patients with rheumatic immune-mediated inflammatory diseases: data from a prospective cohort study

    Get PDF
    Contains fulltext : 251778.pdf (Publisher’s version ) (Open Access)BACKGROUND: Research on the disease severity of COVID-19 in patients with rheumatic immune-mediated inflammatory diseases (IMIDs) has been inconclusive, and long-term prospective data on the development of SARS-CoV-2 antibodies in these patients are lacking. METHODS: Adult patients with rheumatic IMIDs from the Amsterdam Rheumatology and Immunology Center, Amsterdam were invited to participate. All patients were asked to recruit their own sex-matched and age-matched control subject. Clinical data were collected via online questionnaires (at baseline, and after 1-4 and 5-9 months of follow-up). Serum samples were collected twice and analysed for the presence of SARS-CoV-2-specific antibodies. Subsequently, IgG titres were quantified in samples with a positive test result. FINDINGS: In total, 3080 consecutive patients and 1102 controls with comparable age and sex distribution were included for analyses. Patients were more frequently hospitalised compared with controls when infected with SARS-CoV-2; 7% vs 0.7% (adjusted OR: 7.33, 95% CI: 0.96 to 55.77). Only treatment with B-cell targeting therapy was independently associated with an increased risk of COVID-19-related hospitalisation (adjusted OR: 14.62, 95% CI: 2.31 to 92.39). IgG antibody titres were higher in hospitalised compared with non-hospitalised patients, and slowly declined with time in similar patterns for patients in all treatment subgroups and controls. INTERPRETATION: We observed that patients with rheumatic IMIDs, especially those treated with B-cell targeting therapy, were more likely to be hospitalised when infected with SARS-CoV-2. Treatment with conventional synthetic disease-modifying antirheumatic drugs (DMARDs) and biological DMARDs other than B-cell targeting agents is unlikely to have negative effects on the development of long-lasting humoral immunity against SARS-CoV-2

    Right drug, right patient, right time: aspiration or future promise for biologics in rheumatoid arthritis?

    Get PDF
    Individualising biologic disease-modifying anti-rheumatic drugs (bDMARDs) to maximise outcomes and deliver safe and cost-effective care is a key goal in the management of rheumatoid arthritis (RA). Investigation to identify predictive tools of bDMARD response is a highly active and prolific area of research. In addition to clinical phenotyping, cellular and molecular characterisation of synovial tissue and blood in patients with RA, using different technologies, can facilitate predictive testing. This narrative review will summarise the literature for the available bDMARD classes and focus on where progress has been made. We will also look ahead and consider the increasing use of ‘omics’ technologies, the potential they hold as well as the challenges, and what is needed in the future to fully realise our ambition of personalised bDMARD treatment

    Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis

    Get PDF
    Knowledge about associations between changes in the structure and/or function of intestinal microbes (the microbiota) and the pathogenesis of various diseases is expanding. However, interactions between the intestinal microbiota and different pharmaceuticals and the impact of these on responses to treatment are less well studied. Several mechanisms are known by which drug-microbiota interactions can influence drug bioavailability, efficacy, and/or toxicity. This includes direct activation or inactivation of drugs by microbial enzymes which can enhance or reduce drug effectiveness. The extensive metabolic capabilities of the intestinal microbiota make it a hotspot for drug modification. However, drugs can also influence the microbiota profoundly and change the outcome of interactions with the host. Additionally, individual microbiota signatures are unique, leading to substantial variation in host responses to particular drugs. In this review, we describe several known and emerging examples of how drug-microbiota interactions influence the responses of patients to treatment for various diseases, including inflammatory bowel disease, type 2 diabetes and cancer. Focussing on rheumatoid arthritis (RA), a chronic inflammatory disease of the joints which has been linked with microbial dysbiosis, we propose mechanisms by which the intestinal microbiota may affect responses to treatment with methotrexate which are highly variable. Furthering our knowledge of this subject will eventually lead to the adoption of new treatment strategies incorporating microbiota signatures to predict or improve treatment outcomes
    corecore