106 research outputs found
Large igneous provinces and mass extinctions: an update
The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capitanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always sufficient recovery time between individual eruptions to negate any cumulative effect of successive flood basalt eruptions. Instead, the environmental and climatic damage must be attributed to single-pulse gas effusions. It is notable that the best-constrained examples of death-by-volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO 2 and SO 2 ) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinction scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO 2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. Intriguingly, many voluminous large igneous province eruptions, especially those of the Cretaceous oceanic plateaus, are not associated with significant extinction losses. This suggests that the link between the two phenomena may be controlled by a range of factors, including continental configuration, the latitude, volume, rate, and duration of eruption, its style and setting (continental vs. oceanic), the preexisting climate state, and the resilience of the extant biota to change
Middle Phanerozoic mass extinctions and a tribute to the work of Professor Tony Hallam
Tony Hallam's contributions to mass extinction studies span more than 50 years and this thematic issue provides an opportunity to pay tribute to the many pioneering contributions he has made to this field. Early work (1961) on the Jurassic in Europe revealed a link, during the Toarcian Stage, between extinction and the spread of anoxic waters during transgression – the first time such a common leitmotif had been identified. He also identified substantial sea-level changes during other mass extinction intervals with either regression (end-Triassic) or early transgression (end-Permian) coinciding with the extinction phases. Hallam's (1981) study on bivalves was also the first to elevate the status of the end-Triassic crisis and place it amongst true mass extinctions, changing previous perceptions that it was a part of a protracted period of turnover, although debates on the duration of this crisis continue (Hallam, 2002). Conflicting views on the nature of recovery from mass extinctions have also developed, especially for the aftermath of the end-Permian mass extinction. These discussions can be traced to Hallam's seminal 1991 paper that noted the considerable delay in benthic recovery during Early Triassic time and attributed it to the persistence of the harmful, high-stress conditions responsible for the extinction itself. This idea now forms the cornerstone of one of the more favoured explanations for this ultra-low diversity interval
The great catastrophe: causes of the Permo-Triassic marine mass extinction
The marine losses during the Permo-Triassic mass extinction were the worst ever experienced. All groups were badly affected, especially amongst the benthos (e.g. brachiopods, corals, bryozoans, foraminifers, ostracods). Planktonic populations underwent a fundamental change with eukaryotic algae being replaced by nitrogen-fixing bacteria, green-sulphur bacteria, sulphate-reducing bacteria and prasinophytes. Detailed studies of boundary sections, especially those in South China, have resolved the crisis to a ∼55 kyr interval straddling the Permo-Triassic boundary. Many of the losses occur at the beginning and end of this interval painting a picture of a two-phase extinction. Improved knowledge of the extinction has been supported by numerous geochemical studies that allow diverse proposed extinction mechanisms to be studied. A transition from oxygenated to anoxic-euxinic conditions is seen in most sections globally, although the intensity and timing shows regional variability. Decreased ocean ventilation coincides with rapidly rising temperatures and many extinction scenarios attribute the losses to both anoxia and high temperatures. Other kill mechanisms include ocean acidification for which there is conflicting support from geochemical proxies and, even less likely, siltation (burial under a massive influx of terrigenous sediment) which lacks substantive sedimentological evidence. The ultimate driver of the catastrophic changes at the end of the Permian was likely Siberian Trap eruptions and their associated carbon dioxide emissions with consequences such as warming, ocean stagnation and acidification. Volcanic winter episodes stemming from Siberian volcanism have also been linked to the crisis, but the short-term nature of these episodes (<decades) and the overwhelming evidence for rapid warming during the crisis makes this an unlikely cause. Finally, whilst the extinction is well studied in equatorial latitudes, a different history is found in northern Boreal latitudes including an earlier crisis which merits further study in order to fully understand the course and cause of the Permo-Triassic extinctions
Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea
Copyright © Cambridge University Press 2015. Strata of Permian - Early Triassic age that include a record of three major extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) were examined at the Festningen section, Spitsbergen. Over the c. 12 Ma record examined, mercury in the sediments shows relatively constant background values of 0.005-0.010 μg g -1 . However, there are notable spikes in Hg concentration over an order of magnitude above background associated with the three extinctions. The Hg/total organic carbon (TOC) ratio shows similar large spikes, indicating that they represent a true increase in Hg loading to the environment. We argue that these represent Hg loading events associated with enhanced Hg emissions from large igneous province (LIP) events that are synchronous with the extinctions. The Hg anomalies are consistent across the NW margin of Pangea, indicating that widespread mercury loading occurred. While this provides utility as a chemostratigraphic marker the Hg spikes may also indicate loading of toxic metals to the environment, a contributing cause to the mass extinction events
Sequence stratigraphy, chemostratigraphy and facies analysis of Cambrian Series 2 – Series 3 boundary strata in northwestern Scotland
Globally, the Series 2 – Series 3 boundary of the Cambrian System coincides with a major carbon isotope excursion, sea-level changes and trilobite extinctions. Here we examine the sedimentology, sequence stratigraphy and carbon isotope record of this interval in the Cambrian strata (Durness Group) of NW Scotland. Carbonate carbon isotope data from the lower part of the Durness Group (Ghrudaidh Formation) show that the shallow-marine, Laurentian margin carbonates record two linked sea-level and carbon isotopic events. Whilst the carbon isotope excursions are not as pronounced as those expressed elsewhere, correlation with global records (Sauk I – Sauk II boundary and Olenellus biostratigraphic constraint) identifies them as representing the local expression of the ROECE and DICE. The upper part of the ROECE is recorded in the basal Ghrudaidh Formation whilst the DICE is seen around 30m above the base of this unit. Both carbon isotope excursions co-occur with surfaces interpreted to record regressive–transgressive events that produced amalgamated sequence boundaries and ravinement/flooding surfaces overlain by conglomerates of reworked intraclasts. The ROECE has been linked with redlichiid and olenellid trilobite extinctions, but in NW Scotland, Olenellus is found after the negative peak of the carbon isotope excursion but before sequence boundary formation
Unusual Intraclast Conglomerates in a Stormy, Hot-House Lake: The Early Triassic North China Basin
Early Triassic temperatures were some of the hottest of the Phanerozoic, sea-surface temperatures approached 40°C, with profound consequences for both the sedimentology and faunal distributions in the oceans. However, the impact of these temperatures in terrestrial settings is unclear. This study examines shallow lacustrine sediments from the Lower Triassic succession of North China. These consist of diverse fluvial to shallow lacustrine sandstones and also spectacular, coarse conglomerates composed of diverse, intraformational clasts reworked from the interbedded sediments. The conglomerate beds can show inverse grading and high angle, flat-pebble imbrication in their lower part and vertically orientated flat pebbles in their upper part. The cobbles include cemented and reworked conglomerate intraclasts and sandstone concentrically-laminated concretions that record multi-step histories of growth and reworking, pointing to rapid cementation of the sandy lake bed (likely facilitated by high temperatures). The conglomerates record frequent, high-energy events that were capable of brecciating a lithified lake bed and transporting cobbles in wave-influenced sediment-gravity flows. Initially, powerful oscillatory flows brecciated and deflated the lake bed and subsequently helped to sustain turbulence during short-distance lateral flow. It is possible that hurricanes, originating from the adjacent hyper-warm, Palaeo-Tethyan Ocean travelled into the major lakes of the North China continent during the Early Triassic
An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification
The controversial Capitanian (Middle Permian, 262 Ma) extinction event is only known from equatorial latitudes, and consequently its global extent is poorly resolved. We demonstrate that there were two, severe extinctions amongst brachiopods in northern Boreal latitudes (Spitsbergen) in the Middle to Late Permian, separated by a recovery phase. New age dating of the Spitsbergen strata (belonging to the Kapp Starostin Formation), using strontium isotopes and d13C trends and comparison with better-dated sections in Greenland, suggests that the first crisis occurred in the Capitanian. This age assignment indicates that this Middle Permian extinction is manifested at higher latitudes. Redox proxies (pyrite framboids and trace metals) show that the Boreal crisis coincided with an intensification of oxygen depletion, implicating anoxia in the extinction scenario. The widespread and near-total loss of carbonates across the Boreal Realm also suggests a role for acidification in the crisis. The recovery interval saw the appearance of new brachiopod and bivalve taxa alongside survivors, and an increased mollusk dominance, resulting in an assemblage reminiscent of younger Mesozoic assemblages. The subsequent end-Permian mass extinction terminated this Late Permian radiation
Tellurium in Late Permian-Early Triassic Sediments as a Proxy for Siberian Flood Basalt Volcanism
We measured the concentrations of trace elements in Late Permian to Early Triassic sediments from Spitsbergen. High mercury concentrations in sediments from the level of the Permo-Triassic Mass Extinction (PTME) at this location were previously attributed to the emplacement of the Siberian Traps Large Igneous Province and used to link the timing of volcanism with the record of environmental change and extinction in these sediments. We investigated the use of the moderately to highly volatile, siderophile elements Ni, Zn, Cd, Sb, Te, Re, and Tl as proxies for the intensity of Siberian volcanism. These trace elements, like Hg, have high concentrations in volcanic gas compared to crustal rocks. Tellurium is highly enriched at the PTME, and Te/Th ratios increase by a factor of ∼20 across the PTME, similar to the variation in Hg/total organic carbon (TOC) in the same samples. Te/Th and Hg/TOC values imply that Siberian volcanism initiated at the onset of the PTME, coincident with the start of the δ13Corganic excursion and abrupt warming. Based on Te and Hg, most Siberian volcanism occurred between the two phases of the PTME boundary (a period of less than 100 ky), but also continued into the Early Triassic. The duration of Siberian volcanism inferred from Te/Th and Hg/TOC is shorter than that indicated by recent high-precision U-Pb ages of Siberian intrusive and extrusive rocks. Te concentrations and Te/Th ratios in sediments represent a useful new proxy for volcanism, which can be used to link the marine sedimentary record with large volcanic events on land
Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation
Lower Triassic marine strata in Spitsbergen accumulated on a mid-to-high latitude ramp in which high-energy foreshore and shoreface facies passed offshore into sheet sandstones of probable hyperpycnite origin. More distal facies include siltstones, shales and dolomitic limestones. Carbon isotope chemostratigraphy comparison allows improved age dating of the Boreal sections and shows a significant hiatus in the upper Spathian. Two major deepening events, in earliest Griesbachian and late Smithian time, are separated by shallowing-upwards trends that culminated in the Dienerian and Spathian substages. The redox record, revealed by changes in bioturbation, palaeoecology, pyrite framboid content and trace metal concentrations, shows anoxic phases alternating with intervals of better ventilation. Only Dienerian–early Smithian time witnessed persistent oxygenation that was sufficient to support a diverse benthic community. The most intensely anoxic, usually euxinic, conditions are best developed in offshore settings, but at times euxinia also developed in upper offshore settings where it is even recorded in hyperpycnite and storm-origin sandstone beds: an extraordinary facet of Spitsbergen's record. The euxinic phases do not track relative water depth changes. For example, the continuous shallowing upwards from the Griesbachian to lower Dienerian was witness to several euxinic phases separated by intervals of more oxic, bioturbated sediments. It is likely that the euxinia was controlled by climatic oscillations rather than intra-basinal factors. It remains to be seen if all the anoxic phases found in Spitsbergen are seen elsewhere, although the wide spread of anoxic facies in the Smithian/Spathian boundary interval is clearly a global event
Sequence Stratigraphy, Chemostratigraphy and Facies Analysis of Cambrian Series 2 - Series 3 Boundary Strata in Northwestern Scotland
Globally, the Series 2 - Series 3 boundary of the Cambrian System coincides with a major carbon isotope excursion, sea-level changes and trilobite extinctions. Here we examine the sedimentology, sequence stratigraphy and carbon isotope record of this interval in the Cambrian strata (Durness Group) of NW Scotland. Carbonate carbon isotope data from the lower part of the Durness Group (Ghrudaidh Formation) show that the shallow-marine, Laurentian margin carbonates record two linked sea-level and carbon isotopic events. Whilst the carbon isotope excursions are not as pronounced as those expressed elsewhere, correlation with global records (Sauk I - Sauk II boundary and Olenellus biostratigraphic constraint) identifies them as representing the local expression of the ROECE and DICE. The upper part of the ROECE is recorded in the basal Ghrudaidh Formation whilst the DICE is seen around 30m above the base of this unit. Both carbon isotope excursions co-occur with surfaces interpreted to record regressive-transgressive events that produced amalgamated sequence boundaries and ravinement/flooding surfaces overlain by conglomerates of reworked intraclasts. The ROECE has been linked with redlichiid and olenellid trilobite extinctions, but in NW Scotland, Olenellus is found after the negative peak of the carbon isotope excursion but before sequence boundary formation
- …