3,429 research outputs found

    A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics

    Get PDF
    The effects of composites as adherends was studied. Several other variables were studied by fractography: aluminum powder adhesive filler, fiber glass cloth scrim or adhesive carrier, new adhesives PPQ-413 and LARC-13, and strength-test temperature. When the new results were juxtaposed with previous work, it appeared that complex interactions between adhesive, adherend, bonding, and testing conditions govern the observed strength and fracture-surface features. The design parameters likely to have a significant effect upon strength-test results are listed

    Effect of polymer properties and adherend surfaces on adhesion

    Get PDF
    High temperature polymer surface characteristics associated with joint strength were evaluated. Selected samples represented composite adherends, aluminum filler and fiber glass carrier cloth. Detailed analysis of fractured joint surfaces revealed unique characteristics typical of the specific adhesive formulations and test conditions. A fracture mechanism model was developed for correlating macroscopic shear strength and microstructure of fracture surfaces. Applications were made to unpublished data on polyimides and fluoropolymers

    A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics

    Get PDF
    Various surface preparations for titanium 6-4 alloy were studied. An anodizing method was investigated, and compared with the results of other chemical treatments, namely, phosphate/fluoride, Pasa-Jell and Turco. The relative durability of the different surface treatments was assessed by monitoring changes in surface chemistry and morphology occasioned by aging at 505 K (450 F). Basic electron spectroscopic data were collected for polyimide and polyphenylquinoxaline adhesives and synthetic precursors. Fractographic studies were completed for several combinations of adherend, adhesive, and testing conditions

    Effect of polymer properties and adherend surfaces on adhesion

    Get PDF
    The surface properties associated with good adhesive joints were evaluated in terms of application of adhesive bonding in aerospace technology. The physical and chemical nature was determined of Ti and Al adherend surfaces after various surface treatments, and the effects on fracture surfaces of high temperature aging, and variations in amide, anhydride, and solvent during polymer synthesis. The effects were characterized of (1) high temperature during shear strength testing, (2) fiber-reinforced composites as adherends, (3) acid/base nature of adherends, (4) aluminum powder adhesive filler, and (5) bonding pressure

    Quantization of Dirac fields in static spacetime

    Get PDF
    On a static spacetime, the solutions of the Dirac equation are generated by a time-independent Hamiltonian. We study this Hamiltonian and characterize the split into positive and negative energy. We use it to find explicit expressions for advanced and retarded fundamental solutions and for the propagator. Finally, we use a fermion Fock space based on the positive/negative energy split to define a Dirac quantum field operator whose commutator is the propagator.Comment: LaTex2e, 17 page

    Foundations for Relativistic Quantum Theory I: Feynman's Operator Calculus and the Dyson Conjectures

    Full text link
    In this paper, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson's second conjecture for QED. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman's path integral, and to prove Dyson's first conjecture that the divergences are in part due to a violation of Heisenberg's uncertainly relations

    Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics

    Get PDF
    We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (but discrete time!) dynamics is compatible with discrete energy levels.Comment: accepted for publication in Open Systems & Information Dynamic

    Relativistic Coulomb problem for particles with arbitrary half-integer spin

    Full text link
    Using relativistic tensor-bispinorial equations proposed in hep-th/0412213 we solve the Kepler problem for a charged particle with arbitrary half-integer spin interacting with the Coulomb potential.Comment: Misprints are correcte

    On "full" twisted Poincare' symmetry and QFT on Moyal-Weyl spaces

    Full text link
    We explore some general consequences of a proper, full enforcement of the "twisted Poincare'" covariance of Chaichian et al. [14], Wess [50], Koch et al. [34], Oeckl [41] upon many-particle quantum mechanics and field quantization on a Moyal-Weyl noncommutative space(time). This entails the associated braided tensor product with an involutive braiding (or ⋆\star-tensor product in the parlance of Aschieri et al. [3,4]) prescription for any coordinates pair of x,yx,y generating two different copies of the space(time); the associated nontrivial commutation relations between them imply that x−yx-y is central and its Poincar\'e transformation properties remain undeformed. As a consequence, in QFT (even with space-time noncommutativity) one can reproduce notions (like space-like separation, time- and normal-ordering, Wightman or Green's functions, etc), impose constraints (Wightman axioms), and construct free or interacting theories which essentially coincide with the undeformed ones, since the only observable quantities involve coordinate differences. In other words, one may thus well realize QM and QFT's where the effect of space(time) noncommutativity amounts to a practically unobservable common noncommutative translation of all reference frames.Comment: Latex file, 24 pages. Final version to appear in PR

    Experimental scheme for quantum teleportation of a single-photon packet

    Full text link
    Both complete protocol and optical setup for experimental realization of quantum teleportation of unknown single-photon wave packet are proposed.Comment: 7 pages, 1 figure (under request
    • …
    corecore