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Abstract

We analyze dynamical consequences of a conjecture that there ex-
ists a fundamental (indivisible) quant of time. In particular we study
the problem of discrete energy levels of hydrogen atom. We are able
to reconstruct potential which in discrete time formalism leads to en-
ergy levels of unperturbed hydrogen atom. We also consider linear
energy levels of quantum harmonic oscillator and show how they are
produced in the discrete time formalism. More generally, we show that
in discrete time formalism finite motion in central potential leads to
discrete energy spectrum, the property which is common for quantum
mechanical theory. Thus deterministic (but discrete time!) dynamics
is compatible with discrete energy levels.

1 Introduction

Discovery of discrete energy levels for atoms demonstrated that the classical
Newtonian model could not be used to describe this phenomenon. Now
days this phenomenon is described in the framework of quantum mechanics.
The advantages of the computational methods of quantum mechanics are
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well known. They are widely used for computation of energy levels not
only of atoms, but also in essentially more complicated situations. However,
despite this computational power, quantum mechanics induced many still
unsolvable phenomenological problems, see [1]-[37] for extended discussions.
One of distinguishing features of quantum mechanics (at least in Copenhagen
interpretation) is the impossibility to provide realist deterministic description
of quantum reality. In particular, here particles do not have well defined
trajectories.

The impossibility to use the deterministic evolutionary model looks rather
counterintuitive. Moreover, it contradicts to many quantum experiments
where ”trajectories” of particles are well observed, e.g. in Wilson’s camera.
Of course, in modern quantum phenomenology this problem is solved via
the principle of complementarity. Nevertheless, this strong deviation from
our intuitive picture of physical reality induces a rather general opinion that
quantum mechanics has a lot of mysteries [27].

This unsatisfactory status of quantum mechanics induces new and new
attempts to create new models that would be closer to our physical intuition.
We just mention one model, Bohmian mechanics [20, 21].

Last years there were performed intensive investigations to reconsider
probabilistic foundations of quantum mechanics, see e.g. [36, 37]. These
investigations are of the great importance. It is well known that ”quantum
probability” differs strongly from ”classical probability”. Typically, see e.g.
[27], it is pointed out that quantum randomness is irreducible and funda-
mental (in the opposite to classical randomness that could be reduced to e.g.
randomness of initial conditions). This irreducible quantum randomness is
deeply connected with the impossibility of realist deterministic models that
would reproduce quantum probabilities. It seems to be impossible to imagine
that quantum particles have deterministic trajectories, since the existence of
trajectories should imply classical probabilistic rules. But these rules are
violated (for example, in the two-slit experiment [27], see also investigations
on EPR-Bohm-Bell consideration and chameleon effect [17, 18, 19]).

In papers [38, 39, 40, 41] there was developed the contextual approach
to quantum probabilities that might be used to explain the origin of quan-
tum randomness in the classical (but contextual!) probabilistic framework.
Therefore the probabilistic constraint to create realist deterministic models
need not be taken into account1.

1Of course, there are also Bell‘s inequality arguments. But there arguments are strongly
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What kind of realist deterministic models could be created for quantum
phenomena?

As we have already mentioned, we could not directly use Newtonian me-
chanics even for the simplest quantum system – the hydrogen atom. Thus
Newton equations should be changed. The most straightforward idea is to
change classical forces (in the case of atom Coulomb’s law) and find new
forces, quantum forces. Such forces should ”drive” particles along trajecto-
ries that reproduce quantum data. There is a rather common view point
that one of successful realizations of such a program is given by Bohmian
mechanics. However, this problem is not simple, since Bohmian mechanics
is, in fact, not mechanics, but a field model. There exists an additional field
equation for quantum potential. We do not know any model that would give
the realization of the discussed program of ”modernization” of Newtonian
mechanics.

In the present paper we consider discrete time Newtonian model. This is
a kind of classical physical model (in particular, realist deterministic). The
only difference is discreteness of time. Thus we use the classical force – in-
teraction picture, but the discrete time version of Newton’s second law. One
of the main advantages of this model is its simplicity. We do not change
phenomenology of classical physics (position, velocity, force-interaction, tra-
jectories). We only change the mathematical representation of time.

On the other hand, discreteness is the main distinguishing feature of quan-
tum physics. In fact, M. Planck and A. Einstein obtained Wien’s law simply
by assuming discreteness of energy. However, this discreteness approach was
not developed further to get a formalism based only on the discreteness pos-
tulate. Discreteness of quantum observables was reproduced by using an
advanced mathematical formalism based on the representation of the ob-
servables in the complex Hilbert space. As we have already mentioned, the
use of this formalism (despite its computational advantages) induced many
phenomenological problems. We are trying to modify classical physics by
starting with one natural postulate:

TD: “Time is discrete”.

Here, in particular, continuous Newton equations (differential equations)
are just approximations of real equations of motions, namely, Newton’s dif-

coupled to nonlocality. And this problem is far from problems considered in the present
paper.
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ference equations2. In the present paper we use the discrete time model for
the hydrogen atom. The discrete-time postulate implies discrete orbits and
energy levels. At the same time we have deterministic motion along orbits.
In the limit we get continuous motion along circular orbit (a kind of Bohr’s
correspondence principle).

In the present paper we do not try to develop some statistical theory
(a kind of Born approach). Our investigation has some similarities with
the original paper of W. Heisenberg (that was not statistical one), [1, 2].
We hope that starting with only discrete time postulate we would be able
to develop simpler formalism to calculate spectra of quantum observables -
without using noncommutative calculus and without a cardinal change of the
phenomenology of classical physics.

It is interesting to point that there is some similarity between our ap-
proach and G. ’t Hooft’s approach [7, 8, 9] where a general scheme was
proposed that maps states of quantum field system to the states of a com-
pletely deterministic field model. Although in this note we do not consider
the field-particle duality it would be interesting to study this problem.

Some statistical consequences of the postulate (TD) were investigated in
our previous papers [42, 43, 44].

2 Discrete Time Dynamics

In classical mechanics a dynamical function A = A(p, q) (here p and q are
momenta and coordinates of the system) evolves according to the following
well known equation [4]

DtA = {A,H} (1)

where H = H(p, q) is a Hamiltonian of the system and in the right hand side
is a Poisson bracket, which could be presented as

{A,B} =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
(2)

The left hand side of (1) contains a continuous time derivative

DtA =
dA

dt
2We reverse the modern viewpoint on the description of physical reality. Not (discrete)

difference equations are used to approximate (continuous) differential equations, but the
inverse!
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As it was mentioned earlier we are interested in construction dynamics with
discrete time. This is done with the help of discrete derivative which is
postulated to be

D
(τ)
t A =

1

τ
[A(t+ τ)− A(t)],

where τ is the discreteness parameter. This parameter is finite and is treated
in the same way as Plank constant in quantum mechanical formalism. In
particular if τ is small relative to dimensions of the system then classical
approximation with continuous derivative might work well (although this
could not be the case all the time in the same sense as there are examples
when quantum formalism is reasonable even for macroscopic systems, for
example in superfluidity).

Summarizing, the discrete time dynamical equation is postulated to be

D
(τ)
t A = {A,H}, (3)

where A(p, q) is a real-valued function of real-valued dynamical variables and
in the right hand side there is classical Poisson bracket (2). The equation (3)
could be solved in the sense that we can write

A(t+ τ) = A(t) + τ{A,H} (4)

thus providing the evolution of any dynamical function A = A(p, q).
Note that in our model the coordinate space is continuous.

3 Motion in Central Potential

Here we will study the properties of motion in central potential U = U(r) in
discrete time formalism. As we will see discreteness of time enriches mechan-
ics with some new properties which are usually thought as having quantum
nature. In particular as it will be shown below in discrete time mechanics
stationary orbits (i.e. finite motion) have discrete energy spectrum. We point
that the phase space is assumed here to be a continuous real manifold.

Following the general approach described in the previous section we start
from the classical Hamiltonian and then write the dynamical equations. In
polar coordinates (r, ϕ) the Hamiltonian of the system with massm in central
potential U(r) is given by

H(r, pr, ϕ, pϕ) =
p2r
2m

+
p2ϕ

2mr2
+ U(r), (5)

5



n=1 n=2 n=3

Figure 1: First three trajectories.

where pr and pϕ denote momenta corresponding to r and ϕ – radial and angu-
lar coordinates respectively. Using (4) let us write the dynamical equations.
We obtain

r(t+ τ) = r(t) + τ
pr
m

(6)

pr(t+ τ) = pr(t) + τ

(

p2ϕ
mr3

− ∂U

∂r

)

(7)

ϕ(t+ τ) = ϕ(t) + τ
pϕ
mr2

(8)

pϕ(t+ τ) = pϕ(t) (9)

The equation (9) corresponds to angular momentum conservation in central
field – this is a direct analog of the angular momentum conservation law in
classical (continuous time) dynamics and is a consequence of the fact that
our Hamiltonian does not depend on ϕ, (it is a so called cyclic variable).

Let us limit ourself to circular stationary periodic orbits. In this case
we should have r(t + τ) = r(t) and thus using (6) we see that the radial
momentum should be zero,

pr(t) = 0 (10)

From (7) and (10) we obtain the following condition

p2ϕ
mr3

=
∂U

∂r
(11)

Let us finally come to the angular coordinate ϕ. For stable motion the
following periodicity condition should be satisfied (Fig. 1)

ϕ(nτ) = ϕ(0) + 2π, (12)
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where n = 1, 2, . . . (note that discreteness of n is a consequence of discreteness
of time). Using (8) and (12) we get

nτ
pϕ
mr2

= 2π,

or

pϕ =
2πmr2

nτ
(13)

From (11) and (13) we get the following equation for the radius of the n-th
orbit

4π2mr

n2τ 2
=

∂U

∂r
(14)

If potential U(r) is known then from equation (14) we can find r = rn. If
we consider physical potentials, i.e. potentials for which the force, −U ′(r), is
smooth, negative, and is strictly monotonically decreasing in absolute value
as r grows, vanishing on infinity, then solution of (14) always exists and
unique. Now upon substituting rn to the Hamiltonian (5) we obtain energy
levels En.

For circular periodic orbits the original Hamiltonian (5) due to (10) and
(11) simplifies to the following form

H =
1

2
r
∂U

∂r
+ U(r)

Thus the expression for energy En of the n-th stable periodic orbit in terms
of its radius rn is given by

En =
1

2
rn

∂U

∂r

∣

∣

∣

∣

r=rn

+ U(rn), n = 1, 2, . . . (15)

As we see if potential U(r) allows stationary periodic motion and equation
(14) has unique positive solutions rn then the energy spectrum is discrete.
This situation is directly analogous to quantum mechanics where for finite
motion we might expect discrete energy levels.

4 Energy Levels of Hydrogen Atom

Our task in this section is to study whether the discrete time dynamics
in central field described can lead to energy levels of hydrogen atom. We
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treat energy levels as given (measured) quantities and our task is to find the
corresponding potential. We restrict ourself to the simplest case when the
atom is unperturbed by external electric or magnetic fields and thus currently
we do not study splitting of the energy levels (note that in order to observe
“degenerate” levels in quantum mechanical treatment one needs to somehow
perturb the system in such a way that the levels split).

We start from the following energy spectrum for hydrogen atom [13]

En = − γ

n2
, n = 1, 2, . . . , (16)

where γ ≈ 13.6 eV is ionization energy of the hydrogen atom. The task is to
find such U = U(r) that leads to the spectrum (16). Using (14), (15), and
(16) we get

1

2
ξ
r2n
n2

+ U(rn) = − γ

n2
, (17)

where the constant ξ is given by (note that ξ depends on discreteness pa-
rameter τ)

ξ =
4π2m

τ 2
(18)

and n = 1, 2, . . . Let us rewrite equation (17) in the following form

U(rn) = − 1

n2

(

1

2
ξr2n + γ

)

(19)

We want to find U(r). The idea is to obtain dependence of rn = f(n) on
n and then inverting it substitute n = f−1(rn) in (19), here f−1 denotes
function inverse to f . As a result of this procedure we will get rid of explicit
dependence of the right hand side of (19) on n, it will depend only on rn.
Then we interpolate the result for any r > 0. The resulting U(r) we check
by substitution to (14)-(15).

Let us proceeding as described above. First, we have to find dependence
of rn on n. To do this let us assume that n is continuous and take the
derivative in n of both sides of (19). This gives

∂U

∂r

∣

∣

∣

∣

r=rn

drn
dn

=
ξr2n
n3

− ξrnr
′

n

n2
+

2γ

n3
(20)

Now, from (14) we find
∂U

∂r

∣

∣

∣

∣

r=rn

= ξ
rn
n2

(21)
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Figure 2: The shape of potential (25) which leads to energy levels of the
hydrogen atom (we put β = ξ = γ = 1).

Substituting (21) to (20) we obtain the following differential equation for rn

2ξnrnr
′

n − ξr2n − 2γ = 0 (22)

Solving (22) and taking into consideration only positive solution we obtain

rn =

√

−2γ + e2βξn

ξ
, (23)

where the constant β is due to integration. Inverting (23) we get

n = e−2βξ(2γ + r2nξ) (24)

Substituting (24) to (19) we obtain

U(rn) = − e4βξ

4γ + 2r2nξ

or performing interpolation, i.e. putting r in place of rn we finally get

U(r) = − e4βξ

4γ + 2r2ξ
(25)

Now, substituting (25) to (14)-(15) we come to the expected energy levels
(16) of hydrogen atom.

The form of the potential (25) is presented on Fig.2. It is interesting to
note that unlike Coulomb’s potential it is nonsingular at r = 0.
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5 Spectrum of Harmonic Oscillator

Procedure described in the previous section could be used to obtain potentials
corresponding to arbitrary energy spectrum. Here we deduce the potential
which results in linear energy levels of the homogeneous two dimensional
quantum harmonic oscillator.

In quantum mechanics homogeneous two dimensional harmonic oscillator
is a system described by the potential

U(r) =
1

2
mω2r2, (26)

Solving the Schrödinger equation in potential (26) results in the following
energy spectrum

EΛ = ~ω(Λ + 1), Λ = 0, 1, . . . (27)

The simplest way to get this relation is to note that we deal with two uncou-
pled oscillators (indeed, if x and y are Cartesian coordinates then equation
(26) takes the form U = 1

2
mω2(x2+y2)), each having energy Ek = ~ω(k+ 1

2
),

then the total energy is just the sum of two such terms and we get (27).
Let us first rewrite (27) in terms of n = 1, 2, . . ., we have n = Λ + 1 and

thus
En = αn, n = 1, 2, . . . , (28)

where α = ~ω. Our task is to find potential U = U(r) which result in
energy levels (28). Proceeding as in the previous section we assume that n
is continuous and write the differential equation

dEn

dn
= α (29)

Now, using (14) and (15) equation (29) reduces to

2ξ
rnr

′

n

n2
− ξ

r2n
n3

= α, (30)

where ξ is given by (18). The positive solution of (30) is given by

rn =

√

βn+
αn3

2ξ
, (31)
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where β is a constant due to integration. This leads us to a cubic equation
in terms of n, which has one real solution

n =
V(rn)
3α

− 2βξ

V(rn)
,

where V(r) is given by

V(r) = 31/3
(

9r2α2ξ +
√
3
√

27r4α4ξ2 + 8α3β3ξ3
)1/3

We finally get the expression for potential

U(r) =
V(r)
3

− 2αβξ

V(r) − 9r2 V(r)2 α2 ξ

2
(

V(r)2 − 6αβξ
)2

If we put β = 0 in (31) the potential takes simple form

U(r) =
3

2

(

r2α2ξ

4

)1/3

(32)

Substituting (32) to (14)-(15) we get correct energy levels (28). It is inter-
esting to provide the expression (32) when all constants are substituted, we
have

U(r) =
3

2

(

r
~ωπ

√
m

τ

)2/3

6 General Case of Arbitrary Spectrum

One can find explicit relations for the radii of the orbits for arbitrary spectrum
En. Indeed, From (14) and (15) we want to find U as a function of r in terms
of a given energy spectrum En. As we did above we assume the continuity
of the parameter n and take derivative of both parts of (15) in n, we have

E ′

n = r ′

n

ξrn
n2

− ξr2n
n3

+ r ′

n

∂U

∂r

∣

∣

∣

∣

r=rn

,

where prime denotes the derivative in n. The use of (14) allows us to get a
differential equation for rn in terms of only known quantities. We have

2rnr
′

n −
1

n
r2n =

n2

ξ
E ′

n

11



Introducing a new variable ρ = r2 we obtain a linear differential equation
which could be rewritten as

d

dn

(ρn
n

)

=
1

ξ
nE ′

n

which can be integrated to obtain

rn =

√

1

ξ
n

(

nEn − E1 −
∫ n

1

Ekdk + ǫ

)

(33)

Equation (33) expresses n-th radius in terms of n, i.e. it has the form r =
f(n) now if we invert it we relate n in terms of r, n = f−1(r), which if
substituted to (15) gives an equation for U in terms of r only (actually in
terms of rn, but we perform interpolation effectively ignoring the fact that
the relation strictly holds only for orbit radii).

Note that in (33) we have a constant ǫ (having units of energy) arising
due to the integration, this means that we have a set of potentials resulting
in the same energy spectrum. As we see from (33) the constant ǫ could be
determined if for example the smallest radius r1 is known. In sections 4 and
5 the situation was the same resulting in the constant β (see (23) and (31)).
Since ǫ is more interesting from the point of view of physical interpretation
we provide the expressions for β in terms of ǫ. For the case of energy levels
of hydrogen atom we have (see (23))

βhydr =
1

2ξ
ln(ǫ+ γ)

and for the case of harmonic oscillator we have (see (31))

βosc =
ǫ− 1

2
α

ξ

7 Energy Spectrum in Various Potentials

As we already seen, for a given potential it is straightforward to compute
corresponding energy levels. Indeed, from (14) we find r = rn and upon
substitution to (15) we get En. Like in quantum mechanics, potential U =
U(r) should be attractive and strong enough to result in finite motion. Below
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we consider several common central potentials which result in rather simple
expressions for energy spectrum. In what follows the constant ξ is given by
(18), note that it depends on time discreteness parameter as 1/τ 2.
a). Coulomb potential

U(r) = −α

r
, rn = n2/3

(

α

ξ

)1/3

, En = − 1

2n2/3

(

α2ξ
)1/3

Note that energy spectrum is different from the −γ/n2 spectrum obtained
in quantum mechanics for this potential (see section on energy levels of hy-
drogen atom for detailed discussion).

b). Linear potential

U(r) = αr, rn =
n2α

ξ
, En =

3n2α2

2ξ

c). Logarithmic potential

U(r) = α ln r, rn = n

√

α

ξ
, En = α

[

1

2
+ ln

(

n

√

α

ξ

)]

For potentials (a), (b), and (c) rn > 0 if α > 0 in all three cases it corresponds
to the attraction field.

d). Polynomial potential

U(r) = αrσ, rn =

(

n2ασ

ξ

)
1

2−σ

, En =
1

2
α(2 + σ)

(

n2ασ

ξ

)
σ

2−σ

(34)

This case generalizes cases (a) and (b) described above, although because of
importance of these potentials we provided corresponding expressions explic-
itly. Note that if we make σ in (34) satisfy the following equation

2σ

2− σ
= 1,

i.e. σ = 2/3 then we get the linear energy spectrum En ∼ n for the 2D
quantum harmonic oscillator (see previous section for detailed discussion).
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8 Discussion and Conclusion

In this paper we have shown that discrete time formalism leads to some
distinguishable properties of micro-observables that are used to be described
with quantum mechanics. In particular it was shown that finite motion
results in discrete energy spectrum. Of the main interest in this paper is
discrete energy levels of hydrogen atom. We have shown that for unperturbed
hydrogen atom the discrete time formalism is able to give correct energy
spectrum, more precisely we have reconstructed the corresponding “micro”-
potential. Here we did not consider Stark or Zeeman effects for hydrogen
atom, it would be interesting to study them from the point of view of discrete
time formalism.

As we have seen in above the discrete time model requires potentials which
are different from QM potentials. One may argue this as a disadvantage of the
model. We pay attention that there are no reasons to expect to reproduce QM
by using the standard classical potentials; Bohr, Zommerfeld, Heisenberg and
many others tried to do this, but they did not succeed. D. Bohm developed
a new model [20] in which quantum mechanics can be reproduced on the
classical basis, but, of course, the classical potential could not be preserved –
it is perturbed by the quantum potential. And the latter looks not so natural
from the classcial viewpoint, see e.g. the quantum potential for the two slit
experiment in [20]. The discrete time model has an analogy with Bohmian
mechanics – it tries to reproduce QM by changing potentials. But there is
of course the fundamental difference: the only postulate that is used in the
proposed approach is that there exists a quant of time τ .

Another interesting point is that one might expect that our dynamical
equations are essentially difference equations which might produce discrete
spectrum. This is not correct – we recall that in our model only time is
discrete, but space is still continuous.

There is still an open problem of the quantative value of the discreteness
parameter τ . One might speculate its relation with Plank time constant
[34, 35] – the smallest measurable time interval in ordinary QM and gravity
– which is quantatively given by

tP l =

√

~G

c5
≈ 5.3910−44 (sec.)

The detailed analysis of this issue is out of the scope of the present article.
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There might be an interesting interconnection on how the discrete time is
used in information dynamics theory[10, 12] and the discrete time dynamics
as it appears in presented study. In particular, it would be interesting to
consider the equations for information dynamics with discrete time.

Finally, we would like to comment also that there might be a deep in-
terrelation between the energy-time uncertainty relations [28, 29, 30] and
Bohr-Somerfeld quantization rules [22] in quantum mechanics and our dis-
crete time model. In particular one can try to write the Bohr-Somerfeld
semi-classical quantization rules for energy and time as canonical variables.
For a system with conserved energy one might get EnTn ∼ n~, this relation
holds for example for energy levels En and classical periods Tn of Hydrogen
atom. One the other hand the relation (12) in discrete mechanics could be
treated as the condition for the period to take only discrete values Tn ∼ nτ .
We can see that although relations are similar there is an extra factor En in
the quantum-mechanical relation. In fact one may argue that if we make the
τ in equations of motion depend on the energy of the system as

τ = τ0
ε

E
,

where τ0 is the “fundamental” time quantum and ε a “fundamental” energy
quantum, we get precisely the semiclassical quantization rules. The question
arise how to treat the energy E here and what will happen with the dynamics.
Further investigation of this interrelation will be discussed elsewhere.
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